StevenZhang
commited on
Commit
•
7a28b7f
1
Parent(s):
b788d6f
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,286 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
# VGen
|
5 |
+
|
6 |
+
|
7 |
+
![figure1](source/VGen.jpg "figure1")
|
8 |
+
|
9 |
+
VGen is an open-source video synthesis codebase developed by the Tongyi Lab of Alibaba Group, featuring state-of-the-art video generative models. This repository includes implementations of the following methods:
|
10 |
+
|
11 |
+
|
12 |
+
- [I2VGen-xl: High-quality image-to-video synthesis via cascaded diffusion models](https://i2vgen-xl.github.io/)
|
13 |
+
- [VideoComposer: Compositional Video Synthesis with Motion Controllability](https://videocomposer.github.io/)
|
14 |
+
- [Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation](https://higen-t2v.github.io/)
|
15 |
+
- [A Recipe for Scaling up Text-to-Video Generation with Text-free Videos]()
|
16 |
+
- [InstructVideo: Instructing Video Diffusion Models with Human Feedback]()
|
17 |
+
- [DreamVideo: Composing Your Dream Videos with Customized Subject and Motion](https://dreamvideo-t2v.github.io/)
|
18 |
+
- [VideoLCM: Video Latent Consistency Model](https://arxiv.org/abs/2312.09109)
|
19 |
+
- [Modelscope text-to-video technical report](https://arxiv.org/abs/2308.06571)
|
20 |
+
|
21 |
+
|
22 |
+
VGen can produce high-quality videos from the input text, images, desired motion, desired subjects, and even the feedback signals provided. It also offers a variety of commonly used video generation tools such as visualization, sampling, training, inference, join training using images and videos, acceleration, and more.
|
23 |
+
|
24 |
+
|
25 |
+
<a href='https://i2vgen-xl.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2311.04145'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/XUi0y7dxqEQ) <a href='https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441039979087.mp4'><img src='source/logo.png'></a>
|
26 |
+
|
27 |
+
|
28 |
+
## 🔥News!!!
|
29 |
+
- __[2023.12]__ We release the high-efficiency video generation method [VideoLCM](https://arxiv.org/abs/2312.09109)
|
30 |
+
- __[2023.12]__ We release the code and model of I2VGen-XL and the ModelScope T2V
|
31 |
+
- __[2023.12]__ We release the T2V method [HiGen](https://higen-t2v.github.io) and customizing T2V method [DreamVideo](https://dreamvideo-t2v.github.io).
|
32 |
+
- __[2023.12]__ We write an [introduction docment](doc/introduction.pdf) for VGen and compare I2VGen-XL with SVD.
|
33 |
+
- __[2023.11]__ We release a high-quality I2VGen-XL model, please refer to the [Webpage](https://i2vgen-xl.github.io)
|
34 |
+
|
35 |
+
|
36 |
+
## TODO
|
37 |
+
- [x] Release the technical papers and webpage of [I2VGen-XL](doc/i2vgen-xl.md)
|
38 |
+
- [x] Release the code and pretrained models that can generate 1280x720 videos
|
39 |
+
- [ ] Release models optimized specifically for the human body and faces
|
40 |
+
- [ ] Updated version can fully maintain the ID and capture large and accurate motions simultaneously
|
41 |
+
- [ ] Release other methods and the corresponding models
|
42 |
+
|
43 |
+
|
44 |
+
## Preparation
|
45 |
+
|
46 |
+
The main features of VGen are as follows:
|
47 |
+
- Expandability, allowing for easy management of your own experiments.
|
48 |
+
- Completeness, encompassing all common components for video generation.
|
49 |
+
- Excellent performance, featuring powerful pre-trained models in multiple tasks.
|
50 |
+
|
51 |
+
|
52 |
+
### Installation
|
53 |
+
|
54 |
+
```
|
55 |
+
conda create -n vgen python=3.8
|
56 |
+
conda activate vgen
|
57 |
+
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
|
58 |
+
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
59 |
+
```
|
60 |
+
|
61 |
+
### Datasets
|
62 |
+
|
63 |
+
We have provided a **demo dataset** that includes images and videos, along with their lists in ``data``.
|
64 |
+
|
65 |
+
*Please note that the demo images used here are for testing purposes and were not included in the training.*
|
66 |
+
|
67 |
+
|
68 |
+
### Clone codeb
|
69 |
+
|
70 |
+
```
|
71 |
+
git clone https://github.com/damo-vilab/i2vgen-xl.git
|
72 |
+
cd i2vgen-xl
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
## Getting Started with VGen
|
77 |
+
|
78 |
+
### (1) Train your text-to-video model
|
79 |
+
|
80 |
+
|
81 |
+
Executing the following command to enable distributed training is as easy as that.
|
82 |
+
```
|
83 |
+
python train_net.py --cfg configs/t2v_train.yaml
|
84 |
+
```
|
85 |
+
|
86 |
+
In the `t2v_train.yaml` configuration file, you can specify the data, adjust the video-to-image ratio using `frame_lens`, and validate your ideas with different Diffusion settings, and so on.
|
87 |
+
|
88 |
+
- Before the training, you can download any of our open-source models for initialization. Our codebase supports custom initialization and `grad_scale` settings, all of which are included in the `Pretrain` item in yaml file.
|
89 |
+
- During the training, you can view the saved models and intermediate inference results in the `workspace/experiments/t2v_train`directory.
|
90 |
+
|
91 |
+
After the training is completed, you can perform inference on the model using the following command.
|
92 |
+
```
|
93 |
+
python inference.py --cfg configs/t2v_infer.yaml
|
94 |
+
```
|
95 |
+
Then you can find the videos you generated in the `workspace/experiments/test_img_01` directory. For specific configurations such as data, models, seed, etc., please refer to the `t2v_infer.yaml` file.
|
96 |
+
|
97 |
+
<!-- <table>
|
98 |
+
<center>
|
99 |
+
<tr>
|
100 |
+
<td ><center>
|
101 |
+
<video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4"></video>
|
102 |
+
</center></td>
|
103 |
+
<td ><center>
|
104 |
+
<video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4"></video>
|
105 |
+
</center></td>
|
106 |
+
</tr>
|
107 |
+
</center>
|
108 |
+
</table>
|
109 |
+
</center> -->
|
110 |
+
|
111 |
+
<table>
|
112 |
+
<center>
|
113 |
+
<tr>
|
114 |
+
<td ><center>
|
115 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01Ya2I5I25utrJwJ9Jf_!!6000000007587-2-tps-1280-720.png"></image>
|
116 |
+
</center></td>
|
117 |
+
<td ><center>
|
118 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01CrmYaz1zXBetmg3dd_!!6000000006723-2-tps-1280-720.png"></image>
|
119 |
+
</center></td>
|
120 |
+
</tr>
|
121 |
+
<tr>
|
122 |
+
<td ><center>
|
123 |
+
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441754174077.mp4">HRER</a> to view the generated video.</p>
|
124 |
+
</center></td>
|
125 |
+
<td ><center>
|
126 |
+
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441138824052.mp4">HRER</a> to view the generated video.</p>
|
127 |
+
</center></td>
|
128 |
+
</tr>
|
129 |
+
</center>
|
130 |
+
</table>
|
131 |
+
</center>
|
132 |
+
|
133 |
+
|
134 |
+
### (2) Run the I2VGen-XL model
|
135 |
+
|
136 |
+
(i) Download model and test data:
|
137 |
+
```
|
138 |
+
!pip install modelscope
|
139 |
+
from modelscope.hub.snapshot_download import snapshot_download
|
140 |
+
model_dir = snapshot_download('damo/I2VGen-XL', cache_dir='models/', revision='v1.0.0')
|
141 |
+
```
|
142 |
+
|
143 |
+
(ii) Run the following command:
|
144 |
+
```
|
145 |
+
python inference.py --cfg configs/i2vgen_xl_infer.yaml
|
146 |
+
```
|
147 |
+
In a few minutes, you can retrieve the high-definition video you wish to create from the `workspace/experiments/test_img_01` directory. At present, we find that the current model performs inadequately on **anime images** and **images with a black background** due to the lack of relevant training data. We are consistently working to optimize it.
|
148 |
+
|
149 |
+
|
150 |
+
<span style="color:red">Due to the compression of our video quality in GIF format, please click 'HRER' below to view the original video.</span>
|
151 |
+
|
152 |
+
<center>
|
153 |
+
<table>
|
154 |
+
<center>
|
155 |
+
<tr>
|
156 |
+
<td ><center>
|
157 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01CCEq7K1ZeLpNQqrWu_!!6000000003219-0-tps-1280-720.jpg"></image>
|
158 |
+
</center></td>
|
159 |
+
<td ><center>
|
160 |
+
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4"></video> -->
|
161 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01hIQcvG1spmQMLqBo0_!!6000000005816-1-tps-1280-704.gif"></image>
|
162 |
+
</center></td>
|
163 |
+
</tr>
|
164 |
+
<tr>
|
165 |
+
<td ><center>
|
166 |
+
<p>Input Image</p>
|
167 |
+
</center></td>
|
168 |
+
<td ><center>
|
169 |
+
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442125067544.mp4">HRER</a> to view the generated video.</p>
|
170 |
+
</center></td>
|
171 |
+
</tr>
|
172 |
+
<tr>
|
173 |
+
<td ><center>
|
174 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01ZXY7UN23K8q4oQ3uG_!!6000000007236-2-tps-1280-720.png"></image>
|
175 |
+
</center></td>
|
176 |
+
<td ><center>
|
177 |
+
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4"></video> -->
|
178 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01iaSiiv1aJZURUEY53_!!6000000003309-1-tps-1280-704.gif"></image>
|
179 |
+
</center></td>
|
180 |
+
</tr>
|
181 |
+
<tr>
|
182 |
+
<td ><center>
|
183 |
+
<p>Input Image</p>
|
184 |
+
</center></td>
|
185 |
+
<td ><center>
|
186 |
+
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/441385957074.mp4">HRER</a> to view the generated video.</p>
|
187 |
+
</center></td>
|
188 |
+
</tr>
|
189 |
+
<tr>
|
190 |
+
<td ><center>
|
191 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01NHpVGl1oat4H54Hjf_!!6000000005242-2-tps-1280-720.png"></image>
|
192 |
+
</center></td>
|
193 |
+
<td ><center>
|
194 |
+
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4"></video> -->
|
195 |
+
<!-- <image muted="true" height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image>
|
196 |
+
-->
|
197 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i4/O1CN01DgLj1T240jfpzKoaQ_!!6000000007329-1-tps-1280-704.gif"></image>
|
198 |
+
</center></td>
|
199 |
+
</tr>
|
200 |
+
<tr>
|
201 |
+
<td ><center>
|
202 |
+
<p>Input Image</p>
|
203 |
+
</center></td>
|
204 |
+
<td ><center>
|
205 |
+
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442102706767.mp4">HRER</a> to view the generated video.</p>
|
206 |
+
</center></td>
|
207 |
+
</tr>
|
208 |
+
<tr>
|
209 |
+
<td ><center>
|
210 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i1/O1CN01odS61s1WW9tXen21S_!!6000000002795-0-tps-1280-720.jpg"></image>
|
211 |
+
</center></td>
|
212 |
+
<td ><center>
|
213 |
+
<!-- <video muted="true" autoplay="true" loop="true" height="260" src="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4"></video> -->
|
214 |
+
<image height="260" src="https://img.alicdn.com/imgextra/i3/O1CN01Jyk1HT28JkZtpAtY6_!!6000000007912-1-tps-1280-704.gif"></image>
|
215 |
+
</center></td>
|
216 |
+
</tr>
|
217 |
+
<tr>
|
218 |
+
<td ><center>
|
219 |
+
<p>Input Image</p>
|
220 |
+
</center></td>
|
221 |
+
<td ><center>
|
222 |
+
<p>Clike <a href="https://cloud.video.taobao.com/play/u/null/p/1/e/6/t/1/442163934688.mp4">HRER</a> to view the generated video.</p>
|
223 |
+
</center></td>
|
224 |
+
</tr>
|
225 |
+
</center>
|
226 |
+
</table>
|
227 |
+
</center>
|
228 |
+
|
229 |
+
### (3) Other methods
|
230 |
+
|
231 |
+
In preparation.
|
232 |
+
|
233 |
+
|
234 |
+
## Customize your own approach
|
235 |
+
|
236 |
+
Our codebase essentially supports all the commonly used components in video generation. You can manage your experiments flexibly by adding corresponding registration classes, including `ENGINE, MODEL, DATASETS, EMBEDDER, AUTO_ENCODER, DISTRIBUTION, VISUAL, DIFFUSION, PRETRAIN`, and can be compatible with all our open-source algorithms according to your own needs. If you have any questions, feel free to give us your feedback at any time.
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
## BibTeX
|
241 |
+
|
242 |
+
If this repo is useful to you, please cite our corresponding technical paper.
|
243 |
+
|
244 |
+
|
245 |
+
```bibtex
|
246 |
+
@article{2023i2vgenxl,
|
247 |
+
title={I2VGen-XL: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models},
|
248 |
+
author={Zhang, Shiwei and Wang, Jiayu and Zhang, Yingya and Zhao, Kang and Yuan, Hangjie and Qing, Zhiwu and Wang, Xiang and Zhao, Deli and Zhou, Jingren},
|
249 |
+
booktitle={arXiv preprint arXiv:2311.04145},
|
250 |
+
year={2023}
|
251 |
+
}
|
252 |
+
@article{2023videocomposer,
|
253 |
+
title={VideoComposer: Compositional Video Synthesis with Motion Controllability},
|
254 |
+
author={Wang, Xiang and Yuan, Hangjie and Zhang, Shiwei and Chen, Dayou and Wang, Jiuniu, and Zhang, Yingya, and Shen, Yujun, and Zhao, Deli and Zhou, Jingren},
|
255 |
+
booktitle={arXiv preprint arXiv:2306.02018},
|
256 |
+
year={2023}
|
257 |
+
}
|
258 |
+
@article{wang2023modelscope,
|
259 |
+
title={Modelscope text-to-video technical report},
|
260 |
+
author={Wang, Jiuniu and Yuan, Hangjie and Chen, Dayou and Zhang, Yingya and Wang, Xiang and Zhang, Shiwei},
|
261 |
+
journal={arXiv preprint arXiv:2308.06571},
|
262 |
+
year={2023}
|
263 |
+
}
|
264 |
+
@article{dreamvideo,
|
265 |
+
title={DreamVideo: Composing Your Dream Videos with Customized Subject and Motion},
|
266 |
+
author={Wei, Yujie and Zhang, Shiwei and Qing, Zhiwu and Yuan, Hangjie and Liu, Zhiheng and Liu, Yu and Zhang, Yingya and Zhou, Jingren and Shan, Hongming},
|
267 |
+
journal={arXiv preprint arXiv:2312.04433},
|
268 |
+
year={2023}
|
269 |
+
}
|
270 |
+
@article{qing2023higen,
|
271 |
+
title={Hierarchical Spatio-temporal Decoupling for Text-to-Video Generation},
|
272 |
+
author={Qing, Zhiwu and Zhang, Shiwei and Wang, Jiayu and Wang, Xiang and Wei, Yujie and Zhang, Yingya and Gao, Changxin and Sang, Nong },
|
273 |
+
journal={arXiv preprint arXiv:2312.04483},
|
274 |
+
year={2023}
|
275 |
+
}
|
276 |
+
@article{wang2023videolcm,
|
277 |
+
title={VideoLCM: Video Latent Consistency Model},
|
278 |
+
author={Wang, Xiang and Zhang, Shiwei and Zhang, Han and Liu, Yu and Zhang, Yingya and Gao, Changxin and Sang, Nong },
|
279 |
+
journal={arXiv preprint arXiv:2312.09109},
|
280 |
+
year={2023}
|
281 |
+
}
|
282 |
+
```
|
283 |
+
|
284 |
+
## Disclaimer
|
285 |
+
|
286 |
+
This open-source model is trained with using [WebVid-10M](https://m-bain.github.io/webvid-dataset/) and [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/) datasets and is intended for <strong>RESEARCH/NON-COMMERCIAL USE ONLY</strong>.
|