yuekun commited on
Commit
39232a8
1 Parent(s): 1dfa5d6

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -1
README.md CHANGED
@@ -1,3 +1,59 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mgp-str
4
+ - image-to-text
5
+ widget:
6
+ - src: https://github.com/AlibabaResearch/AdvancedLiterateMachinery/blob/main/OCR/MGP-STR/demo_imgs/IIIT5k_HOUSE.png
7
+ example_title: Example 1
8
+ - src: https://github.com/AlibabaResearch/AdvancedLiterateMachinery/blob/main/OCR/MGP-STR/demo_imgs/IIT5k_EVERYONE.png
9
+ example_title: Example 2
10
+ - src: https://github.com/AlibabaResearch/AdvancedLiterateMachinery/blob/main/OCR/MGP-STR/demo_imgs/CUTE80_KINGDOM.png
11
+ example_title: Example 3
12
  ---
13
+
14
+ # MGP-STR (base-sized model)
15
+
16
+ MGP-STR base-sized model is trained on MJSynth and SynthText. It was introduced in the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) and first released in [this repository](https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR).
17
+
18
+ ## Model description
19
+
20
+ MGP-STR is pure vision STR model, consisting of ViT and specially designed A^3 modules. The ViT module was initialized from the weights of DeiT-base, except the patch embedding model, due to the inconsistent input size.
21
+
22
+ Images (32x128) are presented to the model as a sequence of fixed-size patches (resolution 4x4), which are linearly embedded. One also adds absolute position embeddings before feeding the sequence to the layers of the ViT module. Next, A^3 module selects a meaningful combination from the tokens of ViT output and integrates them into one output token corresponding to a specific character. Moreover, subword classification heads based on BPE A^3 module and WordPiece A^3 module are devised for subword predictions, so that the language information can be implicitly modeled. Finally, these multi-granularity predictions (character, subword and even word) are merged via a simple and effective fusion strategy.
23
+
24
+ ## Intended uses & limitations
25
+
26
+ You can use the raw model for optical character recognition (OCR) on text images. See the [model hub](https://huggingface.co/models?search=alibaba-damo/mgp-str) to look for fine-tuned versions on a task that interests you.
27
+
28
+ ### How to use
29
+
30
+ Here is how to use this model in PyTorch:
31
+
32
+ ```python
33
+ from transformers import MGPSTRProcessor, MGPSTRModel
34
+ import requests
35
+ from PIL import Image
36
+
37
+ processor = MGPSTRProcessor.from_pretrained('alibaba-damo/mgp-str-base')
38
+ model = MGPSTRModel.from_pretrained('alibaba-damo/mgp-str-base')
39
+
40
+ # load image from the IIIT-5k dataset
41
+ url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"
42
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
43
+
44
+ pixel_values = processor(image, return_tensors="pt").pixel_values
45
+ generated_ids, attens = model(pixel_values)
46
+
47
+ generated_text = processor.batch_decode(generated_ids)['generated_text']
48
+ ```
49
+
50
+ ### BibTeX entry and citation info
51
+
52
+ ```bibtex
53
+ @inproceedings{ECCV2022mgp_str,
54
+ title={Multi-Granularity Prediction for Scene Text Recognition},
55
+ author={Peng Wang, Cheng Da, and Cong Yao},
56
+ booktitle = {ECCV},
57
+ year={2022}
58
+ }
59
+ ```