File size: 2,399 Bytes
a09d309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-date
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-date

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2773
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9259

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1  | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log        | 1.0   | 1    | 0.5215          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 2.0   | 2    | 0.4264          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 3.0   | 3    | 0.3649          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 4.0   | 4    | 0.3289          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 5.0   | 5    | 0.3099          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 6.0   | 6    | 0.2992          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 7.0   | 7    | 0.2920          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 8.0   | 8    | 0.2865          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 9.0   | 9    | 0.2821          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 10.0  | 10   | 0.2790          | 0.0       | 0.0    | 0.0 | 0.9259   |
| No log        | 11.0  | 11   | 0.2773          | 0.0       | 0.0    | 0.0 | 0.9259   |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3