alifalhasan commited on
Commit
53b38a4
β€’
1 Parent(s): bd74eb8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +179 -1
README.md CHANGED
@@ -1,7 +1,185 @@
1
  ---
 
 
 
 
2
  license: mit
3
  language:
4
  - en
5
  - ar
6
  pipeline_tag: translation
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Arabic2English
3
+ colorFrom: blue
4
+ colorTo: purple
5
+ sdk: gradio
6
  license: mit
7
  language:
8
  - en
9
  - ar
10
  pipeline_tag: translation
11
+ metrics:
12
+ - accuracy
13
+ library_name: transformers
14
+ ---
15
+
16
+ # Model Card
17
+
18
+ ## Overview
19
+
20
+ - **Model name:** Arabic2English Translation
21
+ - **Model description:** Translates between Arabic and English.
22
+ - **Authors:** Alif Al Hasan
23
+ - **Repository link:** https://huggingface.co/spaces/alifalhasan/arabic2english/tree/main
24
+ - **License:** MIT
25
+ - **Contact information:** [email protected]
26
+
27
+ ## Performance
28
+
29
+ - **Metrics:** Accuracy (100%)
30
+ - **Dataset:** Approximately 5,000 images of EPL team emblems, balanced across classes. Sources and preprocessing steps described in detail further below.
31
+
32
+ ## Data
33
+
34
+ - **Training data:**
35
+ - Size: 5,000 images
36
+ - Class distribution: Balanced (1,000 images per class)
37
+ - Sources: [English Premier League Logo Detection](https://www.kaggle.com/datasets/alexteboul/english-premier-league-logo-detection-20k-images)
38
+ - Preprocessing: Resizing to 224x224 pixels, normalization
39
+ - **Potential biases:** Currently unknown biases in the dataset.
40
+
41
+ ## Inference
42
+
43
+ - **Input:**
44
+ - Format: JPEG or PNG images
45
+ - Size: 224x224 pixels
46
+ - Color space: RGB
47
+ - **Output:** Predicted class probabilities for each of the 5 EPL teams.
48
+ - **Inference API:** [https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier](https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier)
49
+ - **Usage instructions:** Simply upload an image of any of the EPL's top 5 team's emblem to get a prediction.
50
+
51
+ ## Ethics
52
+
53
+ - **Potential biases:** The model may inherit biases from the training data, such as over- or under-representation of certain team emblems.
54
+ - **Mitigation strategies:** Further exploration of dataset biases and potential augmentation techniques to address them.
55
+ - **Ethical considerations:**
56
+ - Awareness of potential biases and limitations in the model's predictions.
57
+ - Responsible use of the model, avoiding harmful generalizations or discrimination.
58
+ - Respect for the rights and privacy of individuals and organizations associated with the EPL teams.
59
+
60
+ ---
61
+
62
+
63
+ # Top 5 EPL Teams' Emblem Identifier
64
+ A simple and well designed web app to identify the emblem of the top 5 teams of **EPL(English Premier League)** namely **Arsenal, Chelsea, Liverpool, Manchester City** and **Manchester United**.
65
+
66
+
67
+ ### Requirements
68
+ - [Python 3.11](https://python.org/)
69
+ - [NumPy](https://numpy.org/)
70
+ - [SciPy](https://scipy.org/)
71
+ - [Gradio](https://www.gradio.app/)
72
+ - [Tensorflow](https://tensorflow.org/)
73
+
74
+
75
+ ### Table Of Contents
76
+ - [Introduction](#introduction)
77
+ - [Model Architecture](#model-architecture)
78
+ - [Project Architecture](#project-architecture)
79
+ - [How To Run](#how-to-run)
80
+ - [License](#license)
81
+ - [Contributor](#contributor)
82
+
83
+
84
+ ### Introduction
85
+ A simple and well designed web app to identify the emblem of the top 5 teams of **EPL**. This model has been trained with a balanced dataset which contains almost **5k** images of the emblems of the teams.
86
+
87
+
88
+ ### Model Architecture
89
+ The model utilizes a straightforward convolutional neural network (CNN) architecture, comprising the following layers:
90
+
91
+ 1. **Convolutional Layer:**
92
+ - 32 filters, each of size 3x3
93
+ - ReLU activation function
94
+ - Input shape: 224x224x3 (RGB images)
95
+ - Extracts spatial features from input images.
96
+
97
+ 2. **Max Pooling Layer:**
98
+ - Pool size: 2x2
99
+ - Reduces spatial dimensions for capturing more global features.
100
+
101
+ 3. **Flattening Layer:**
102
+ - Flattens the 2D feature maps into a 1D vector for input to dense layers.
103
+
104
+ 4. **Dense Layer 1:**
105
+ - 64 neurons
106
+ - ReLU activation function
107
+
108
+ 5. **Output Layer (Dense Layer 2):**
109
+ - 5 neurons (matching the number of classes)
110
+ - Softmax activation to produce probability scores for each class.
111
+
112
+ **Key Points:**
113
+ - Input image size: 224x224 pixels
114
+ - Optimizer: Adam with a learning rate of 0.001
115
+ - Loss function: Categorical crossentropy
116
+ - Performance metric: Accuracy
117
+
118
+ **Visual Representation:**
119
+ [Input image (224x224x3)] --> [Conv2D] --> [MaxPooling2D] --> [Flatten] --> [Dense 1] --> [Output Layer (Dense 2)] --> [Predicted class]
120
+
121
+
122
+ ### Prject Architecture
123
+ ```
124
+ β”œβ”€β”€ data
125
+ β”‚ └── arsenal - images of arsenal's emblem.
126
+ β”‚ └── chelsea - images of chelsea's emblem.
127
+ β”‚ └── liverpool - images of liverpool's emblem.
128
+ β”‚ └── manchester-city - images of manchester-city's emblem.
129
+ β”‚ └── manchester-united - images of united's emblem.
130
+ β”‚
131
+ β”‚
132
+ β”œβ”€β”€ model
133
+ β”‚ └── football_logo_model.h5 - generated model.
134
+ β”‚
135
+ β”‚
136
+ β”œβ”€β”€ src
137
+ β”‚ └── classify
138
+ β”‚ └── classify.py - this module classifies the emblem from input image.
139
+ β”‚ └── train
140
+ β”‚ └── trainer.py - this module trains the model.
141
+ β”‚
142
+ β”‚
143
+ β”œβ”€β”€ app.py - this module starts the app interface.
144
+ β”‚
145
+ β”‚
146
+ β”œβ”€β”€ LICENSE - license file of this project.
147
+ β”‚
148
+ β”‚
149
+ β”œβ”€β”€ README.md - readme file of this project.
150
+ β”‚
151
+ β”‚
152
+ β”œβ”€β”€ requirements.txt - list of required packages.
153
+ ```
154
+
155
+ ### How To Run
156
+ First, install dependencies
157
+ ```bash
158
+ # clone project
159
+ git clone https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier
160
+
161
+ # install project
162
+ cd epl-top5-emblem-classifier
163
+ pip install -r requirements.txt
164
+ ```
165
+
166
+ Next, download the dataset from [here](https://drive.google.com/file/d/1O5Mm-86AlUf5fUYf1NS8J_t22h7h_UbQ/view?usp=sharing). First unzip the folder. **dataset** folder contains **five** more folders. Copy them and paste into the **data** directory of this project folder.
167
+
168
+ Now train the model using this command:
169
+ ```bash
170
+ python src/train/trainer.py
171
+ ```
172
+
173
+ Finally, deploy the model using this command:
174
+ ```bash
175
+ python app.py
176
+ ```
177
+
178
+ ### License
179
+ Distributed under the MIT License. See `LICENSE` for more information.
180
+
181
+
182
+ ### Contributor
183
+ Alif Al Hasan - [@alifalhasan](https://huggingface.co/alifalhasan) - [email protected]
184
+
185
+ Project Link: [https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier](https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier)