--- title: Arabic2English colorFrom: blue colorTo: purple sdk: gradio license: mit language: - en - ar pipeline_tag: translation metrics: - accuracy library_name: transformers --- # Model Card ## Overview - **Model name:** Arabic2English Translation - **Model description:** Translates between Arabic and English. - **Authors:** Alif Al Hasan - **Repository link:** https://huggingface.co/spaces/alifalhasan/arabic2english/tree/main - **License:** MIT - **Contact information:** alif.stu2017@juniv.edu --- # Arabic2English Translation A simple and well designed web app to translate between **Arabic** and **English**. ### Requirements - gradio - torch>=1.6 - torchtext==0.6 - transformers - nltk - pandas - spacy - https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl ### Table Of Contents - [Introduction](#introduction) - [Model Architecture](#model-architecture) - [Project Architecture](#project-architecture) - [How To Run](#how-to-run) - [License](#license) - [Contributor](#contributor) ### Introduction A simple and well designed web app to identify the emblem of the top 5 teams of **EPL**. This model has been trained with a balanced dataset which contains almost **5k** images of the emblems of the teams. ### Model Architecture The model utilizes a straightforward convolutional neural network (CNN) architecture, comprising the following layers: 1. **Convolutional Layer:** - 32 filters, each of size 3x3 - ReLU activation function - Input shape: 224x224x3 (RGB images) - Extracts spatial features from input images. 2. **Max Pooling Layer:** - Pool size: 2x2 - Reduces spatial dimensions for capturing more global features. 3. **Flattening Layer:** - Flattens the 2D feature maps into a 1D vector for input to dense layers. 4. **Dense Layer 1:** - 64 neurons - ReLU activation function 5. **Output Layer (Dense Layer 2):** - 5 neurons (matching the number of classes) - Softmax activation to produce probability scores for each class. **Key Points:** - Input image size: 224x224 pixels - Optimizer: Adam with a learning rate of 0.001 - Loss function: Categorical crossentropy - Performance metric: Accuracy **Visual Representation:** [Input image (224x224x3)] --> [Conv2D] --> [MaxPooling2D] --> [Flatten] --> [Dense 1] --> [Output Layer (Dense 2)] --> [Predicted class] ### Prject Architecture ``` ├── data │ └── arsenal - images of arsenal's emblem. │ └── chelsea - images of chelsea's emblem. │ └── liverpool - images of liverpool's emblem. │ └── manchester-city - images of manchester-city's emblem. │ └── manchester-united - images of united's emblem. │ │ ├── model │ └── football_logo_model.h5 - generated model. │ │ ├── src │ └── classify │ └── classify.py - this module classifies the emblem from input image. │ └── train │ └── trainer.py - this module trains the model. │ │ ├── app.py - this module starts the app interface. │ │ ├── LICENSE - license file of this project. │ │ ├── README.md - readme file of this project. │ │ ├── requirements.txt - list of required packages. ``` ### How To Run First, install dependencies ```bash # clone project git clone https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier # install project cd epl-top5-emblem-classifier pip install -r requirements.txt ``` Next, download the dataset from [here](https://drive.google.com/file/d/1O5Mm-86AlUf5fUYf1NS8J_t22h7h_UbQ/view?usp=sharing). First unzip the folder. **dataset** folder contains **five** more folders. Copy them and paste into the **data** directory of this project folder. Now train the model using this command: ```bash python src/train/trainer.py ``` Finally, deploy the model using this command: ```bash python app.py ``` ### License Distributed under the MIT License. See `LICENSE` for more information. ### Contributor Alif Al Hasan - [@alifalhasan](https://huggingface.co/alifalhasan) - alif.stu2017@juniv.edu Project Link: [https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier](https://huggingface.co/spaces/alifalhasan/epl-top5-emblem-classifier)