File size: 1,920 Bytes
17e92f4
 
 
 
 
 
 
 
 
 
5df036d
17e92f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5df036d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: output
  results: []
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# output

This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7283
- Accuracy: 0.6978
- F1 Score: 0.6979

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1 Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
| 0.4822        | 1.0   | 1952  | 0.7514          | 0.6989   | 0.7001   |
| 0.6036        | 2.0   | 3904  | 0.7232          | 0.7020   | 0.7030   |
| 0.6004        | 3.0   | 5856  | 0.7226          | 0.7020   | 0.7027   |
| 0.5904        | 4.0   | 7808  | 0.7260          | 0.7037   | 0.7046   |
| 0.5919        | 5.0   | 9760  | 0.7250          | 0.7039   | 0.7048   |
| 0.5939        | 6.0   | 11712 | 0.7260          | 0.7053   | 0.7060   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1