File size: 2,355 Bytes
091e441 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: Whisper Small Tr - CV 43h - LLR
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 16.1
type: mozilla-foundation/common_voice_16_1
config: tr
split: None
args: 'config: tr, split: test'
metrics:
- name: Wer
type: wer
value: 21.38916344685057
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Tr - CV 43h - LLR
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2477
- Wer: 21.3892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2468 | 0.37 | 500 | 0.2886 | 24.3238 |
| 0.2099 | 0.73 | 1000 | 0.2673 | 22.8161 |
| 0.1841 | 1.1 | 1500 | 0.2577 | 22.0433 |
| 0.1767 | 1.46 | 2000 | 0.2540 | 21.8600 |
| 0.1718 | 1.83 | 2500 | 0.2504 | 21.6444 |
| 0.1629 | 2.19 | 3000 | 0.2492 | 21.6120 |
| 0.1693 | 2.56 | 3500 | 0.2486 | 21.4161 |
| 0.1594 | 2.92 | 4000 | 0.2477 | 21.3892 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|