--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: IDAT_aug_concat_879_Wav2Vec results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: val args: default metrics: - name: Accuracy type: accuracy value: 0.55 --- # IDAT_aug_concat_879_Wav2Vec This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6928 - Accuracy: 0.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.7033 | 0.9714 | 17 | 0.6928 | 0.55 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1