alirzb commited on
Commit
cb9e1cc
1 Parent(s): 7da29bd

Model save

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ base_model: MIT/ast-finetuned-audioset-10-10-0.4593
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: S1_M1_R3_AST_42822762
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # S1_M1_R3_AST_42822762
17
+
18
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0082
21
+ - Accuracy: 0.9992
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 5
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 0.0081 | 1.0 | 379 | 0.0099 | 0.9984 |
56
+ | 0.0005 | 2.0 | 759 | 0.0044 | 0.9984 |
57
+ | 0.0006 | 3.0 | 1139 | 0.0093 | 0.9984 |
58
+ | 0.0003 | 4.0 | 1519 | 0.0048 | 0.9984 |
59
+ | 0.0 | 4.99 | 1895 | 0.0082 | 0.9992 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.32.1
65
+ - Pytorch 2.1.2
66
+ - Datasets 2.16.1
67
+ - Tokenizers 0.13.3