Molmo-7B-D-0924 / image_preprocessing_molmo.py
chrisc36's picture
Upload processor
001b110 verified
raw
history blame
22.8 kB
"""Image processor class for Molmo"""
from typing import List, Optional, Union, Mapping
import numpy as np
import einops
import torch
import torchvision.transforms
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import convert_image_dtype
from transformers.image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ImageInput,
is_valid_image,
)
from transformers.processing_utils import ImagesKwargs
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.utils import TensorType, is_vision_available, logging
logger = logging.get_logger(__name__)
def make_batched_images(images) -> List[List[ImageInput]]:
"""
Accepts images in list or nested list format, and makes a list of images for preprocessing.
Args:
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
The input image.
Returns:
list: A list of images.
"""
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
return [img for img_list in images for img in img_list]
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
return images
elif is_valid_image(images):
return [images]
raise ValueError(f"Could not make batched images from {images}")
def pad_to_bounding_box(
image, offset_height, offset_width, target_height,
target_width, value=0
):
height, width = image.shape[:2]
after_padding_width = target_width - offset_width - width
after_padding_height = target_height - offset_height - height
return np.pad(image, [
[offset_height, after_padding_height],
[offset_width, after_padding_width],
[0, 0]
], constant_values=value)
def normalize_image(image, offset, scale):
image -= np.array(offset, dtype=np.float32)[None, None, :]
image /= np.array(scale, dtype=np.float32)[None, None, :]
return image
def resize_and_pad(
image,
desired_output_size,
resize_method=InterpolationMode.BILINEAR,
pad_value=0,
normalize=True,
image_mean=OPENAI_CLIP_MEAN,
image_std=OPENAI_CLIP_STD,
):
desired_height, desired_width = desired_output_size
height, width = image.shape[:2]
# Cast into float32 since the training code did this in float32 and it (very rarely) effects
# the results after rounding.
image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
image_scale = min(image_scale_x, image_scale_y)
scaled_height = int(np.array(height, np.float32) * image_scale)
scaled_width = int(np.array(width, np.float32) * image_scale)
# if resize_method == "tensorflow":
# FIXME remove
import tensorflow as tf
image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
image = tf.image.resize(
image,
[scaled_height, scaled_width],
method=tf.image.ResizeMethod.BILINEAR,
antialias=True,
)
image = tf.clip_by_value(image, 0.0, 1.0)
image = image.numpy()
# else:
# image = torch.permute(torch.from_numpy(image), [2, 0, 1])
# image = convert_image_dtype(image) # resize in flaot32
# image = torchvision.transforms.Resize(
# [scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
# )(image)
# image = torch.clip(image, 0.0, 1.0)
# image = torch.permute(image, [1, 2, 0]).numpy()
top_pad = (desired_height - scaled_height) // 2
left_pad = (desired_width - scaled_width) // 2
padding = [
[top_pad, desired_height - scaled_height - top_pad],
[left_pad, desired_width - scaled_width - left_pad],
[0, 0]
]
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
image = np.pad(image, padding, constant_values=pad_value)
if normalize:
image = normalize_image(image, offset=image_mean, scale=image_std)
return image, image_mask
def select_tiling(h, w, patch_size, max_num_patches):
"""Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
original_size = np.stack([h, w]) # [1, 2]
original_res = h * w
tilings = []
for i in range(1, max_num_patches+1):
for j in range(1, max_num_patches+1):
if i*j <= max_num_patches:
tilings.append((i, j))
# sort so argmin and argmax favour smaller tilings in the event of a tie
tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
candidate_tilings = np.array(tilings, dtype=np.int32) # [n_resolutions, 2]
candidate_resolutions = candidate_tilings * patch_size # [n_resolutions, 2]
# How much we would need to scale the image to fit exactly in each tiling
original_size = np.stack([h, w], dtype=np.float32) # [1, 2]
required_scale_d = candidate_resolutions.astype(np.float32) / original_size
required_scale = np.min(required_scale_d, axis=-1, keepdims=True) # [n_resolutions, 1]
if np.all(required_scale < 1):
# We are forced to downscale, so try to minimize the amount of downscaling
ix = np.argmax(required_scale)
else:
# Pick the resolution that required the least upscaling so that it most closely fits the image
required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
ix = np.argmin(required_scale)
return candidate_tilings[ix]
class MolmoImagesKwargs(ImagesKwargs, total=False):
max_crops: Optional[int]
overlap_margins: Optional[List[int]]
base_image_input_size: Optional[List[int]]
image_token_length_w: Optional[int]
image_token_length_h: Optional[int]
image_patch_size: Optional[int]
image_padding_mask: Optional[bool]
class MolmoImageProcessor(BaseImageProcessor):
"""Preprocess images and multi-model inputs"""
def __init__(
self,
max_crops: int = 12,
overlap_margins: List[int] = (4, 4),
base_image_input_size: List[int] = (336, 336),
image_token_length_w: int = 12,
image_token_length_h: int = 12,
image_patch_size: int = 14,
image_padding_mask: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
):
super().__init__(**kwargs)
self.max_crops = max_crops
self.overlap_margins = overlap_margins
self.base_image_input_size = base_image_input_size
self.image_token_length_w = image_token_length_w
self.image_token_length_h = image_token_length_h
self.image_patch_size = image_patch_size
self.image_padding_mask = image_padding_mask
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
def image_to_patches_and_tokens(
self,
image: ImageInput,
image_patch_token_id: int,
image_col_token_id: int,
image_start_token_id: int,
image_end_token_id: int,
max_crops: Optional[int] = None,
overlap_margins: Optional[List[int]] = None,
base_image_input_size: Optional[Union[int, List[int]]] = None,
image_token_length_w: Optional[int] = None,
image_token_length_h: Optional[int] = None,
image_patch_size: Optional[int] = None,
):
"""Preprocesses an image
Returns:
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
change between images but the other dimension are fixed
tokens: (n_tokens,) int32 tokens, pad tokens indicating where to insert the
patch features, might include other special tokens as well
patch_ordering: (n_crops, n_tokens_per_crop) order image features should be inserted
into the `tokens`, negative values indicates patches features to exclude
padding_mask: (n_crops, n_patches) what percent of each crop is padding, be None
if the image mask is not being used.
"""
if isinstance(base_image_input_size, int):
base_image_input_size = (base_image_input_size, base_image_input_size)
base_image_input_d = image_patch_size
tokens_per_image = image_token_length_w * image_token_length_h
image_base_patch_w = base_image_input_size[1] // base_image_input_d
image_base_patch_h = base_image_input_size[0] // base_image_input_d
original_image_h, original_image_w = image.shape[:2]
crop_size = base_image_input_size[0]
# Discard this many patches from the (left/top, right/bottom) of crops
left_margin, right_margin = overlap_margins
# left_margin, right_margin = 2, 2
assert left_margin % 2 == 0 # Required for compatibility with 2x2 pooling
total_margin_pixels = base_image_input_d*(right_margin + left_margin) # pixels removed per dim
crop_patches = base_image_input_size[0] // base_image_input_d # patches per crop dim
crop_window_patches = crop_patches - (right_margin + left_margin) # usable patches
crop_window_size = crop_window_patches * base_image_input_d
tiling = select_tiling(
original_image_h - total_margin_pixels,
original_image_w - total_margin_pixels,
crop_window_size,
max_crops
)
src, img_mask = resize_and_pad(
image,
[tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels]
)
# Now we have to split the image into crops, while keeping track of how each patch in the
# each crop should be ordered in the global image, this require a lot of tricky booking
n_crops = tiling[0] * tiling[1]
patches_arr = []
mask_arr = []
patch_ordering_arr = []
# We assume 2x2 pooling, but can allow padding the right/bottom with extra
# patches if the number of patches per side is not even
assert (crop_patches+1)//2 == image_token_length_h
assert (crop_patches+1)//2 == image_token_length_w
on = 0
on_patch = 0
for i in range(tiling[0]):
y0 = i*crop_window_size
if i == 0:
crop_y0 = 0
else:
crop_y0 = left_margin // 2
crop_h = image_base_patch_h - (right_margin + left_margin)
if i == 0:
crop_h += left_margin
if i == (tiling[0]-1):
crop_h += right_margin
for j in range(tiling[1]):
x0 = j*crop_window_size
if j == 0:
crop_x0 = 0
else:
crop_x0 = left_margin // 2
crop_w = image_base_patch_w - (right_margin + left_margin)
if j == 0:
crop_w += left_margin
if j == (tiling[1]-1):
crop_w += right_margin
pooled_w = (crop_w + 1) // 2
pooled_h = (crop_h + 1) // 2
patch_ordering_arr.append(
pad_to_bounding_box(
np.reshape(np.arange(on, on+pooled_h*pooled_w, dtype=np.int32), (pooled_h, pooled_w, 1)),
crop_y0, crop_x0, image_token_length_h, image_token_length_w, value=-1
)[:, :, 0]
)
patches_arr.append(src[y0:y0+crop_size, x0:x0+crop_size])
mask_arr.append(img_mask[y0:y0+crop_size, x0:x0+crop_size])
on += pooled_h*pooled_w
on_patch += 1
patches = np.stack(patches_arr)
patch_ordering = np.stack(patch_ordering_arr)
img_mask = np.stack(mask_arr)
# Switch to [n_crops, n_patches, pixels_per_patch] format
image_layout_impatch_w, image_layout_impatch_h = tiling[0], tiling[1]
patches = einops.rearrange(
patches, 'p (h dh) (w dw) c -> p (h w) (dh dw c)',
dh=base_image_input_d,
dw=base_image_input_d,
h=image_base_patch_h,
w=image_base_patch_w
)
img_mask = einops.rearrange(
img_mask, 'p (h dh) (w dw) -> p (h w) (dh dw)',
dh=base_image_input_d,
dw=base_image_input_d,
h=image_base_patch_h,
w=image_base_patch_w
)
img_mask = img_mask.astype(np.float32).mean(axis=-1)
patch_ordering = np.reshape(patch_ordering, [-1])
valid = patch_ordering >= 0
# Transpose order, to get left-to-right order instead of crop-by-crop order
patch_ordering_rh = np.reshape(
patch_ordering,
[tiling[0], tiling[1], image_token_length_h, image_token_length_w]
)
patch_ordering_rh = np.transpose(patch_ordering_rh, [0, 2, 1, 3])
patch_ordering_rh = np.reshape(patch_ordering_rh, [-1])
# The transpose will screw up which patches are masked, project the
# new order into sparse structure of `patch_ordering` to fix this
patch_ordering[valid] = patch_ordering_rh[patch_ordering_rh >= 0]
# Now build the output tokens
h = tiling[0] * crop_window_patches + (right_margin+left_margin)
w = tiling[1] * crop_window_patches + (right_margin+left_margin)
per_row = np.full(
((w+1)//2,),
image_patch_token_id,
)
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
joint = np.tile(per_row, [(h+1)//2])
joint = [
[image_start_token_id],
joint,
[image_end_token_id]
]
# Finally do the same for the global image
resized, _ = resize_and_pad(image, base_image_input_size)
resized = einops.rearrange(
resized, '(h dh) (w dw) c -> (h w) (dh dw c)',
dh=base_image_input_d,
dw=base_image_input_d,
h=image_base_patch_h,
w=image_base_patch_w
)
patches = np.concatenate([np.expand_dims(resized, 0), patches], 0)
# Global image goes first, so the order of patches in previous crops gets increased
patch_ordering = np.where(
patch_ordering >= 0,
patch_ordering + tokens_per_image,
-1
)
patch_ordering = np.concatenate([np.arange(0, tokens_per_image), patch_ordering], 0)
per_row = np.full(
(image_token_length_w,),
image_patch_token_id,
)
per_row = np.concatenate([per_row, [image_col_token_id]], 0)
extra_tokens = np.tile(per_row, [image_token_length_h])
joint = [
[image_start_token_id],
extra_tokens,
[image_end_token_id],
] + joint
joint = np.concatenate(joint, 0)
img_mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)
return patches, joint, patch_ordering, img_mask
def build_image_input_idx(
self,
image_tokens: np.ndarray,
patch_order: np.ndarray,
image_patch_token_id: int,
no_image: Optional[bool] = None,
image_token_length_w: Optional[int] = None,
image_token_length_h: Optional[int] = None,
):
"""Converts `patch_order` into a mapping of token_id -> patch_id"""
tokens_per_image = image_token_length_w * image_token_length_h
if no_image is not None and no_image:
return np.zeros((0, tokens_per_image), np.int32)
# Indices to insert the patches
image_input_idx = image_tokens == image_patch_token_id
image_input_idx = np.nonzero(image_input_idx)[0].astype(np.int32)
if patch_order is not None:
n_tokens = image_input_idx.shape[0]
patch_order = np.reshape(patch_order, [-1])
n_patches = patch_order.shape[0]
valid = patch_order >= 0
n_valid_patches = valid.sum()
assert len(image_input_idx) == n_valid_patches
sorted_patch_ixs = np.zeros([n_tokens], np.int32)
sorted_patch_ixs[patch_order[valid]] = np.arange(n_valid_patches, dtype=np.int32)
# Project the inverted mapping into same sparse structure
sorted_patch_ixs_ex = np.full(np.shape(patch_order), -1)
sorted_patch_ixs_ex[valid] = sorted_patch_ixs
# Do the gather and then re-masked outputs that were masked in `sorted_patch_ixs`
valid = (sorted_patch_ixs_ex >= 0).astype(np.int32)
image_input_idx = image_input_idx[sorted_patch_ixs_ex*valid]
image_input_idx = image_input_idx*valid - 100*(1 - valid)
image_input_idx = np.reshape(image_input_idx, [-1, tokens_per_image])
return image_input_idx
def preprocess(
self,
image: np.ndarray,
image_patch_token_id: int,
image_col_token_id: int,
image_start_token_id: int,
image_end_token_id: int,
max_crops: Optional[int] = None,
overlap_margins: Optional[List[int]] = None,
base_image_input_size: Optional[Union[int, List[int]]] = None,
image_token_length_w: Optional[int] = None,
image_token_length_h: Optional[int] = None,
image_patch_size: Optional[int] = None,
**kwargs,
):
"""Preprocesses a single image"""
max_crops = max_crops or self.max_crops
overlap_margins = overlap_margins or self.overlap_margins
base_image_input_size = base_image_input_size or self.base_image_input_size
image_token_length_w = image_token_length_w or self.image_token_length_w
image_token_length_h = image_token_length_h or self.image_token_length_h
image_patch_size = image_patch_size or self.image_patch_size
crops, image_tokens, patch_ordering, img_mask = self.image_to_patches_and_tokens(
image,
image_patch_token_id,
image_col_token_id,
image_start_token_id,
image_end_token_id,
max_crops,
overlap_margins,
base_image_input_size,
image_token_length_w,
image_token_length_h,
image_patch_size,
)
patch_idx = self.build_image_input_idx(
image_tokens,
patch_ordering,
image_patch_token_id,
image_token_length_w=image_token_length_w,
image_token_length_h=image_token_length_h,
)
return crops, image_tokens, patch_idx, img_mask
def multimodal_preprocess(
self,
images: np.ndarray,
tokens: List[int],
image_idx: np.ndarray,
sequence_length: int,
image_patch_token_id: int,
image_col_token_id: int,
image_start_token_id: int,
image_end_token_id: int,
**kwargs,
):
"""Merge images and text tokens into multi-modal features for the model
:param images: images to use as input
:param tokens: input text tokens
:param image_idx: where to insert the images into `tokens`
:params image_patch_token_id: id to use of tokens that will contain image features
:params image_col_token_id: token id for image column special tokens
:params image_start_token_id: token id for image start special tokens
:params image_end_token_id: token id for image end special tokens
:params kwargs: override preprocessor default args
"""
max_total_crops = kwargs.get("max_crops") or self.max_crops
image_token_length_w = kwargs.get("image_token_length_w") or self.image_token_length_w
image_token_length_h = kwargs.get("image_token_length_h") or self.image_token_length_h
image_patch_size = kwargs.get("image_patch_size") or self.image_patch_size
base_image_input_size = kwargs.get("base_image_input_size") or self.base_image_input_size
image_num_patch = (
base_image_input_size[0] // image_patch_size,
base_image_input_size[1] // image_patch_size,
)
image_padding_mask = kwargs.get("image_padding_mask") or self.image_padding_mask
tokens_per_image = image_token_length_w * image_token_length_h
n_pixels = image_patch_size * image_patch_size * 3
n_patches = image_num_patch[0] * image_num_patch[1]
if images is None:
return {
"input_ids": tokens,
"images": None,
"image_input_idx": None
}
else:
n = len(images)
all_crops = []
all_image_idx = []
out_tokens = []
all_crop_masks = []
for ix in range(n):
token_ix = image_idx[ix]
crops, image_tokens, patch_idx, img_mask = self.preprocess(
images[ix],
image_patch_token_id,
image_col_token_id,
image_start_token_id,
image_end_token_id,
**kwargs,
)
if token_ix == -1: # -1 is an image inserted at the very start
start = 0
token_ix = 0
end = 0
else:
start = 0 if ix == 0 else image_idx[ix-1] + 1
end = token_ix + 1
all_image_idx.append(patch_idx + token_ix)
all_crops.append(crops)
out_tokens.append(tokens[start:token_ix])
out_tokens.append(image_tokens)
if ix == (n - 1):
out_tokens.append(tokens[end:])
if image_padding_mask:
all_crop_masks.append(img_mask)
input_ids = np.concatenate(out_tokens, 0)
images = np.concatenate(all_crops, 0)
image_input_idx = np.concatenate(all_image_idx, 0)
if image_padding_mask:
image_masks = np.concatenate(all_crop_masks, 0)
else:
image_masks = None
out = {
"input_ids": input_ids,
"images": images,
"image_input_idx": image_input_idx
}
if image_masks is not None:
out["image_masks"] = image_masks
return out
MolmoImageProcessor.register_for_auto_class()