specter / README.md
armanc's picture
add readme
86f5dd7
|
raw
history blame
995 Bytes
metadata
language: '`en`'
thumbnail: >-
  https://camo.githubusercontent.com/7d080b7a769f7fdf64ac0ebeb47b039cb50be35287e3071f9d633f0fe33e7596/68747470733a2f2f692e6962622e636f2f33544331576d472f737065637465722d6c6f676f2d63726f707065642e706e67
license: apache 2.0
datasets:
  - SciDocs
metrics:
  - F1
  - accuracy
  - map
  - ndcg

SPECTER

SPECTER is a pre-trained language model to generate document-level embedding of documents. It is pre-trained on a a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning.

Paper: SPECTER: Document-level Representation Learning using Citation-informed Transformers

Original Repo: Github

Evaluation Benchmark: SciDocs

Authors: Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, Daniel S. Weld