--- language: - en license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-small datasets: - Jzuluaga/atcosim_corpus metrics: - wer model-index: - name: Whisper Base ATCOSIM results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: atcosim_corpus type: Jzuluaga/atcosim_corpus args: 'config: en, split: test' metrics: - type: wer value: 4.169242999735006 name: Wer --- # Whisper Base ATCOSIM This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the atcosim_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.0557 - Wer: 4.1692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.6572 | 0.2092 | 100 | 1.2694 | 71.0096 | | 0.3373 | 0.4184 | 200 | 0.3225 | 16.4296 | | 0.147 | 0.6276 | 300 | 0.1653 | 9.2130 | | 0.0975 | 0.8368 | 400 | 0.1107 | 6.3334 | | 0.0544 | 1.0460 | 500 | 0.0892 | 6.2583 | | 0.0344 | 1.2552 | 600 | 0.0760 | 5.4103 | | 0.0517 | 1.4644 | 700 | 0.0663 | 5.0393 | | 0.0396 | 1.6736 | 800 | 0.0607 | 4.3106 | | 0.0297 | 1.8828 | 900 | 0.0566 | 4.2708 | | 0.0133 | 2.0921 | 1000 | 0.0557 | 4.1692 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1