File size: 2,343 Bytes
ef9ac33 e4a417a ef9ac33 e4a417a ef9ac33 e4a417a ef9ac33 e4a417a ef9ac33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-small
datasets:
- Jzuluaga/atcosim_corpus
metrics:
- wer
model-index:
- name: Whisper Base ATCOSIM
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: atcosim_corpus
type: Jzuluaga/atcosim_corpus
args: 'config: en, split: test'
metrics:
- type: wer
value: 7.2040707016604175
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base ATCOSIM
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the atcosim_corpus dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0468
- Wer: 7.2041
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 1.6033 | 0.2092 | 100 | 1.3602 | 78.1066 |
| 0.6161 | 0.4184 | 200 | 0.5993 | 21.7930 |
| 0.1103 | 0.6276 | 300 | 0.1273 | 14.7362 |
| 0.0631 | 0.8368 | 400 | 0.0865 | 13.7587 |
| 0.0369 | 1.0460 | 500 | 0.0763 | 11.9644 |
| 0.0198 | 1.2552 | 600 | 0.0644 | 16.8117 |
| 0.0369 | 1.4644 | 700 | 0.0599 | 10.4379 |
| 0.0272 | 1.6736 | 800 | 0.0518 | 12.1920 |
| 0.0202 | 1.8828 | 900 | 0.0473 | 8.4159 |
| 0.0064 | 2.0921 | 1000 | 0.0468 | 7.2041 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|