--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Jzuluaga/atcosim_corpus metrics: - wer model-index: - name: Whisper Base ATCOSIM results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: atcosim_corpus_numbers_converted type: Jzuluaga/atcosim_corpus args: 'config: en, split: test' metrics: - name: Wer type: wer value: 404.9337012855893 --- # Whisper Base ATCOSIM This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the atcosim_corpus_numbers_converted dataset. It achieves the following results on the evaluation set: - Loss: 0.5964 - Wer: 404.9337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 8.7316 | 0.2092 | 100 | 8.1521 | 110.7020 | | 5.3768 | 0.4184 | 200 | 5.2758 | 110.9713 | | 3.2842 | 0.6276 | 300 | 3.4243 | 119.1492 | | 1.892 | 0.8368 | 400 | 2.1743 | 121.4377 | | 0.9999 | 1.0460 | 500 | 1.4513 | 168.8160 | | 0.6472 | 1.2552 | 600 | 1.0157 | 369.7449 | | 0.529 | 1.4644 | 700 | 0.8372 | 356.8554 | | 0.4086 | 1.6736 | 800 | 0.6973 | 300.4644 | | 0.3559 | 1.8828 | 900 | 0.6164 | 361.0150 | | 0.2302 | 2.0921 | 1000 | 0.5964 | 404.9337 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1