File size: 3,306 Bytes
91a0946 86f4cc1 91a0946 86f4cc1 91a0946 86f4cc1 91a0946 86f4cc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: mit
base_model: dslim/bert-base-NER
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner_column_bert-base-NER
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner_column_bert-base-NER
This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1855
- Precision: 0.7651
- Recall: 0.7786
- F1: 0.7718
- Accuracy: 0.9026
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 702 | 0.7382 | 0.2576 | 0.1887 | 0.2178 | 0.7127 |
| 0.9356 | 2.0 | 1404 | 0.4405 | 0.5139 | 0.4331 | 0.4700 | 0.8157 |
| 0.5445 | 3.0 | 2106 | 0.3608 | 0.5712 | 0.5143 | 0.5413 | 0.8404 |
| 0.5445 | 4.0 | 2808 | 0.3226 | 0.6188 | 0.5840 | 0.6009 | 0.8550 |
| 0.4316 | 5.0 | 3510 | 0.2757 | 0.6788 | 0.6569 | 0.6676 | 0.8728 |
| 0.3605 | 6.0 | 4212 | 0.2828 | 0.6584 | 0.6346 | 0.6463 | 0.8697 |
| 0.3605 | 7.0 | 4914 | 0.2456 | 0.7108 | 0.6926 | 0.7015 | 0.8820 |
| 0.3153 | 8.0 | 5616 | 0.2385 | 0.7055 | 0.6986 | 0.7021 | 0.8855 |
| 0.282 | 9.0 | 6318 | 0.2345 | 0.7044 | 0.6961 | 0.7002 | 0.8853 |
| 0.2587 | 10.0 | 7020 | 0.2313 | 0.7081 | 0.7049 | 0.7065 | 0.8862 |
| 0.2587 | 11.0 | 7722 | 0.2026 | 0.7734 | 0.7537 | 0.7634 | 0.8968 |
| 0.239 | 12.0 | 8424 | 0.1980 | 0.7651 | 0.7687 | 0.7669 | 0.8991 |
| 0.2241 | 13.0 | 9126 | 0.2091 | 0.7368 | 0.7423 | 0.7395 | 0.8936 |
| 0.2241 | 14.0 | 9828 | 0.1954 | 0.7693 | 0.7684 | 0.7689 | 0.8987 |
| 0.2124 | 15.0 | 10530 | 0.1916 | 0.7668 | 0.7749 | 0.7708 | 0.9008 |
| 0.2025 | 16.0 | 11232 | 0.1841 | 0.7699 | 0.7794 | 0.7746 | 0.9024 |
| 0.2025 | 17.0 | 11934 | 0.1938 | 0.7527 | 0.7626 | 0.7576 | 0.8992 |
| 0.193 | 18.0 | 12636 | 0.1849 | 0.7705 | 0.7841 | 0.7772 | 0.9040 |
| 0.1877 | 19.0 | 13338 | 0.1927 | 0.7510 | 0.7649 | 0.7579 | 0.9005 |
| 0.1821 | 20.0 | 14040 | 0.1855 | 0.7651 | 0.7786 | 0.7718 | 0.9026 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|