--- language: - en license: cc-by-nc-4.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: alnrg2arg/blockchainlabs_7B_merged_test2_4 datasets: - Intel/orca_dpo_pairs --- This is a model from blockchainlab test 2.4 - alnrg2arg/blockchainlabs_7B_merged_test2_4. The project is running to make a small LLM for a on-device purpose. Overall pipeline for this iteration is 1.Merging to make a base model (7B) 2.Prune the model to reduce the parameter (50% sparcity) 3.For recovery phase of the pruning, the DPO is chosen. This model which is not pruned is intended to compare with the pruned model. This is the code and parameters I chose for this model(DPO). ``` from transformers import TrainingArguments, AutoModelForCausalLM from trl import DPOTrainer dpo_trainer = DPOTrainer( model = model, ref_model = None, args = TrainingArguments( per_device_train_batch_size = 8, gradient_accumulation_steps = 8, warmup_ratio = 0.1, num_train_epochs = 3, learning_rate = 5e-6, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 1, optim = "adamw_8bit", weight_decay = 0.0, lr_scheduler_type = "linear", seed = 42, output_dir = "output_DPO", ), beta = 0.1, train_dataset = dataset, # eval_dataset = raw_datasets["test"], tokenizer = tokenizer, max_length = 1024, max_prompt_length = 512, ) ``` The code and parameters are borrowed from https://colab.research.google.com/drive/1SKrKGV-BZoU4kv5q3g0jtE_OhRgPtrrQ?usp=sharing