Upload folder using huggingface_hub
Browse files- README.md +54 -0
- config.json +33 -0
- mergekit_moe_config.yml +30 -0
- model-00001-of-00001.safetensors +3 -0
- model.safetensors.index.json +1 -0
- special_tokens_map.json +38 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +46 -0
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- moe
|
5 |
+
- frankenmoe
|
6 |
+
- merge
|
7 |
+
- mergekit
|
8 |
+
- lazymergekit
|
9 |
+
- aloobun/Cypher-Mini-1.8B
|
10 |
+
- aloobun/Cypher-CoT-1.8B
|
11 |
+
base_model:
|
12 |
+
- aloobun/Cypher-Mini-1.8B
|
13 |
+
- aloobun/Cypher-CoT-1.8B
|
14 |
+
---
|
15 |
+
|
16 |
+
# Cypher-Laser-Mixtral-2x1.8B-v0.1
|
17 |
+
|
18 |
+
Cypher-Laser-Mixtral-2x1.8B-v0.1 is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
19 |
+
* [aloobun/Cypher-Mini-1.8B](https://huggingface.co/aloobun/Cypher-Mini-1.8B)
|
20 |
+
* [aloobun/Cypher-CoT-1.8B](https://huggingface.co/aloobun/Cypher-CoT-1.8B)
|
21 |
+
|
22 |
+
## 🧩 Configuration
|
23 |
+
|
24 |
+
```yaml
|
25 |
+
base_model: aloobun/Cypher-Mini-1.8B
|
26 |
+
gate_mode: hidden
|
27 |
+
dtype: bfloat16
|
28 |
+
experts:
|
29 |
+
- source_model: aloobun/Cypher-Mini-1.8B
|
30 |
+
positive_prompts:
|
31 |
+
- "Write a Python script that sorts a list of integers using the bubble sort algorithm."
|
32 |
+
- "Write a JavaScript function that redirects a web page to another page after 5 seconds."
|
33 |
+
- "Describe the steps to troubleshoot a fluid dynamics issue with a water fountain."
|
34 |
+
- "Write a short story about a knight's quest to find a lost treasure, and then summarize it in one paragraph."
|
35 |
+
- "Summarize the following article with details and clarity."
|
36 |
+
- "Tell me about your favorite book and why you like it."
|
37 |
+
|
38 |
+
- source_model: aloobun/Cypher-CoT-1.8B
|
39 |
+
positive_prompts:
|
40 |
+
- "Liam saw an animal running on the farm. Q: Is it true that The animal could be a horse."
|
41 |
+
- "Based on the following paragraph can we conclude that the sentence below is true?"
|
42 |
+
- "According to the article, how do dolphins communicate with each other?"
|
43 |
+
- "Solve this math problem Solve 7644 = 4648*d - 4557*d for d."
|
44 |
+
- "If we have 3 marbles, and two roll under the counter, and one is found, how many marbles are there?"
|
45 |
+
- "What is the result of 25 divided by 5?"
|
46 |
+
- "Is it morally justifiable to lie to protect someone's feelings?"
|
47 |
+
- "Determine if the sentence is true based on the text below. Choose from options."
|
48 |
+
- "What might a person do if they forget their umbrella on a rainy day?"
|
49 |
+
- "Which of the following is an example of renewable energy: a) Coal, b) Solar, c) Oil, d) Natural gas?"
|
50 |
+
- "What is the capital of Canada? a) Toronto, b) Ottawa, c) Montreal, d) Vancouver."
|
51 |
+
- "Which of these animals is a mammal? a) Snake, b) Dolphin, c) Turtle, d) Frog."
|
52 |
+
- "Given a story, answer the question about the story."
|
53 |
+
- "Given a prompt and four completions, select the completion that is the most plausible in continuing or answering the prompt."
|
54 |
+
```
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "aloobun/Cypher-Mini-1.8B",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 2560,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 6912,
|
13 |
+
"max_position_embeddings": 16384,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 2,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 2,
|
20 |
+
"output_router_logits": false,
|
21 |
+
"pad_token_id": 0,
|
22 |
+
"pretraining_tp": 1,
|
23 |
+
"rms_norm_eps": 1e-05,
|
24 |
+
"rope_scaling": null,
|
25 |
+
"rope_theta": 10000.0,
|
26 |
+
"router_aux_loss_coef": 0.001,
|
27 |
+
"sliding_window": null,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "bfloat16",
|
30 |
+
"transformers_version": "4.38.1",
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 32000
|
33 |
+
}
|
mergekit_moe_config.yml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
base_model: aloobun/Cypher-Mini-1.8B
|
3 |
+
gate_mode: hidden
|
4 |
+
dtype: bfloat16
|
5 |
+
experts:
|
6 |
+
- source_model: aloobun/Cypher-Mini-1.8B
|
7 |
+
positive_prompts:
|
8 |
+
- "Write a Python script that sorts a list of integers using the bubble sort algorithm."
|
9 |
+
- "Write a JavaScript function that redirects a web page to another page after 5 seconds."
|
10 |
+
- "Describe the steps to troubleshoot a fluid dynamics issue with a water fountain."
|
11 |
+
- "Write a short story about a knight's quest to find a lost treasure, and then summarize it in one paragraph."
|
12 |
+
- "Summarize the following article with details and clarity."
|
13 |
+
- "Tell me about your favorite book and why you like it."
|
14 |
+
|
15 |
+
- source_model: aloobun/Cypher-CoT-1.8B
|
16 |
+
positive_prompts:
|
17 |
+
- "Liam saw an animal running on the farm. Q: Is it true that The animal could be a horse."
|
18 |
+
- "Based on the following paragraph can we conclude that the sentence below is true?"
|
19 |
+
- "According to the article, how do dolphins communicate with each other?"
|
20 |
+
- "Solve this math problem Solve 7644 = 4648*d - 4557*d for d."
|
21 |
+
- "If we have 3 marbles, and two roll under the counter, and one is found, how many marbles are there?"
|
22 |
+
- "What is the result of 25 divided by 5?"
|
23 |
+
- "Is it morally justifiable to lie to protect someone's feelings?"
|
24 |
+
- "Determine if the sentence is true based on the text below. Choose from options."
|
25 |
+
- "What might a person do if they forget their umbrella on a rainy day?"
|
26 |
+
- "Which of the following is an example of renewable energy: a) Coal, b) Solar, c) Oil, d) Natural gas?"
|
27 |
+
- "What is the capital of Canada? a) Toronto, b) Ottawa, c) Montreal, d) Vancouver."
|
28 |
+
- "Which of these animals is a mammal? a) Snake, b) Dolphin, c) Turtle, d) Frog."
|
29 |
+
- "Given a story, answer the question about the story."
|
30 |
+
- "Given a prompt and four completions, select the completion that is the most plausible in continuing or answering the prompt."
|
model-00001-of-00001.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7322fc16a381f524c9b822eac3444248f539125b1512f4e3365c84a731e345b
|
3 |
+
size 6210726744
|
model.safetensors.index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata": {"mergekit_version": "0.0.4"}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00001.safetensors", "model.norm.weight": "model-00001-of-00001.safetensors", "lm_head.weight": "model-00001-of-00001.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.7.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.8.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.9.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.10.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.11.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.12.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.13.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.14.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.15.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.16.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.17.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.18.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.19.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.20.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.21.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.22.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.23.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.6.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.7.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.8.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.9.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.10.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.11.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.12.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.13.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.14.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.15.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.16.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.17.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.18.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.19.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.20.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.21.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.22.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.23.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors"}}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"pad_token": "<s>",
|
24 |
+
"sep_token": {
|
25 |
+
"content": "</s>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"unk_token": {
|
32 |
+
"content": "<unk>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
}
|
38 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{ '<|prompt|>' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ '<|system|>' + message['content'] + eos_token }}{% elif message['role'] == 'assistant' %}{{ '<|answer|>' + message['content'] + eos_token }}{% endif %}{% if loop.last and add_generation_prompt %}{{ '<|answer|>' }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"cls_token": "</s>",
|
35 |
+
"eos_token": "</s>",
|
36 |
+
"legacy": false,
|
37 |
+
"model_max_length": 1000000000000000019884624838656,
|
38 |
+
"pad_token": "<s>",
|
39 |
+
"padding_side": "left",
|
40 |
+
"sep_token": "</s>",
|
41 |
+
"sp_model_kwargs": {},
|
42 |
+
"spaces_between_special_tokens": false,
|
43 |
+
"tokenizer_class": "LlamaTokenizer",
|
44 |
+
"unk_token": "<unk>",
|
45 |
+
"use_default_system_prompt": false
|
46 |
+
}
|