--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_deit_base_f1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8747913188647746 --- # smids_deit_base_f1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4898 - Accuracy: 0.8748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3398 | 1.0 | 375 | 0.4288 | 0.8164 | | 0.2944 | 2.0 | 750 | 0.4228 | 0.8297 | | 0.1957 | 3.0 | 1125 | 0.4014 | 0.8497 | | 0.176 | 4.0 | 1501 | 0.4565 | 0.8514 | | 0.1333 | 5.0 | 1876 | 0.3698 | 0.8731 | | 0.1322 | 6.0 | 2251 | 0.5002 | 0.8481 | | 0.0952 | 7.0 | 2626 | 0.4711 | 0.8648 | | 0.0941 | 8.0 | 3002 | 0.4872 | 0.8698 | | 0.0946 | 9.0 | 3377 | 0.5003 | 0.8564 | | 0.0911 | 9.99 | 3750 | 0.4898 | 0.8748 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2