Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- whisper-event
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- mozilla-foundation/common_voice_11_0
|
10 |
+
model-index:
|
11 |
+
- name: Whisper Small zh-HK - Alvin
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: mozilla-foundation/common_voice_11_0 zh-HK
|
18 |
+
type: mozilla-foundation/common_voice_11_0
|
19 |
+
config: zh-HK
|
20 |
+
split: test
|
21 |
+
args: zh-HK
|
22 |
+
metrics:
|
23 |
+
- name: Normalized CER
|
24 |
+
type: cer
|
25 |
+
value: 10.11
|
26 |
+
---
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# Whisper Large V2 zh-HK - Alvin
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 11.0 dataset. This is trained with PEFT LoRA+BNB INT8.
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
For training, three datasets were used:
|
36 |
+
- Common Voice 11 Canto Train Set
|
37 |
+
- CantoMap: Winterstein, Grégoire, Tang, Carmen and Lai, Regine (2020) "CantoMap: a Hong Kong Cantonese MapTask Corpus", in Proceedings of The 12th Language Resources and Evaluation Conference, Marseille: European Language Resources Association, p. 2899-2906.
|
38 |
+
- Cantonse-ASR: Yu, Tiezheng, Frieske, Rita, Xu, Peng, Cahyawijaya, Samuel, Yiu, Cheuk Tung, Lovenia, Holy, Dai, Wenliang, Barezi, Elham, Chen, Qifeng, Ma, Xiaojuan, Shi, Bertram, Fung, Pascale (2022) "Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset", 2022. Link: https://arxiv.org/pdf/2201.02419.pdf
|
39 |
+
|
40 |
+
## Training Hyperparameters
|
41 |
+
- learning_rate: 5e-5
|
42 |
+
- train_batch_size: 60 (on 1 3090 GPU)
|
43 |
+
- eval_batch_size: 10
|
44 |
+
- gradient_accumulation_steps: 1
|
45 |
+
- total_train_batch_size: 60x1x1=60
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 500
|
49 |
+
- training_steps: 15000
|
50 |
+
- augmentation: SpecAugment
|
51 |
+
|
52 |
+
## Training Results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Normalized CER |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
56 |
+
| 0.4610 | 0.55 | 2000 | 0.3106 | 13.08 |
|
57 |
+
| 0.3441 | 1.11 | 4000 | 0.2875 | 11.79 |
|
58 |
+
| 0.3466 | 1.66 | 6000 | 0.2820 | 11.44 |
|
59 |
+
| 0.2539 | 2.22 | 8000 | 0.2777 | 10.59 |
|
60 |
+
| 0.2312 | 2.77 | 10000 | 0.2822 | 10.60 |
|
61 |
+
| 0.1639 | 3.32 | 12000 | 0.2859 | 10.17 |
|
62 |
+
| 0.1569 | 3.88 | 14000 | 0.2866 | 10
|