|
|
|
import math |
|
from typing import Any, Dict, List |
|
|
|
import torch |
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
import requests |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
from huggingface_inference_toolkit.logging import logger |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float("inf") |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess( |
|
image, min_num=1, max_num=12, image_size=448, use_thumbnail=False |
|
): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) |
|
for n in range(min_num, max_num + 1) |
|
for i in range(1, n + 1) |
|
for j in range(1, n + 1) |
|
if i * j <= max_num and i * j >= min_num |
|
) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, |
|
target_ratios, |
|
orig_width, |
|
orig_height, |
|
image_size, |
|
) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size, |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def load_image(image_url, input_size=448, max_num=12): |
|
response = requests.get(image_url) |
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess( |
|
image, image_size=input_size, use_thumbnail=True, max_num=max_num |
|
) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
|
|
def split_model(): |
|
device_map = {} |
|
world_size = torch.cuda.device_count() |
|
num_layers = 80 |
|
|
|
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) |
|
num_layers_per_gpu = [num_layers_per_gpu] * world_size |
|
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) |
|
layer_cnt = 0 |
|
for i, num_layer in enumerate(num_layers_per_gpu): |
|
for j in range(num_layer): |
|
device_map[f"language_model.model.layers.{layer_cnt}"] = i |
|
layer_cnt += 1 |
|
device_map["vision_model"] = 0 |
|
device_map["mlp1"] = 0 |
|
device_map["language_model.model.tok_embeddings"] = 0 |
|
device_map["language_model.model.embed_tokens"] = 0 |
|
device_map["language_model.output"] = 0 |
|
device_map["language_model.model.norm"] = 0 |
|
device_map["language_model.lm_head"] = 0 |
|
device_map[f"language_model.model.layers.{num_layers - 1}"] = 0 |
|
|
|
return device_map |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose( |
|
[ |
|
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD), |
|
] |
|
) |
|
return transform |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, model_dir: str, **kwargs: Any) -> None: |
|
self.model = AutoModel.from_pretrained( |
|
model_dir, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=False, |
|
trust_remote_code=True, |
|
device_map=split_model(), |
|
).eval() |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
model_dir, trust_remote_code=True, use_fast=False |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]: |
|
logger.info(f"Received incoming request with {data=}") |
|
|
|
if "instances" in data: |
|
logger.warning("Using `instances` instead of `inputs` is deprecated.") |
|
data["inputs"] = data.pop("instances") |
|
|
|
if "inputs" not in data: |
|
raise ValueError( |
|
"The request body must contain a key 'inputs' with a list of inputs." |
|
) |
|
|
|
if not isinstance(data["inputs"], list): |
|
raise ValueError( |
|
"The request inputs must be a list of dictionaries with either the key" |
|
" 'prompt' or 'prompt' + 'image_url', and optionally including the key" |
|
" 'generation_config'." |
|
) |
|
|
|
if not all(isinstance(input, dict) and "prompt" in input.keys() for input in data["inputs"]): |
|
raise ValueError( |
|
"The request inputs must be a list of dictionaries with either the key" |
|
" 'prompt' or 'prompt' + 'image_url', and optionally including the key" |
|
" 'generation_config'." |
|
) |
|
|
|
predictions = [] |
|
for input in data["inputs"]: |
|
if "prompt" not in input: |
|
raise ValueError( |
|
"The request input body must contain at least the key 'prompt' with the prompt to use." |
|
) |
|
|
|
generation_config = input.get("generation_config", dict(max_new_tokens=1024, do_sample=False)) |
|
|
|
if "image_url" not in input: |
|
|
|
response, history = self.model.chat( |
|
self.tokenizer, |
|
None, |
|
input["prompt"], |
|
generation_config, |
|
history=None, |
|
return_history=True, |
|
) |
|
else: |
|
|
|
pixel_values = load_image(input["image_url"], max_num=6).to( |
|
torch.bfloat16 |
|
) |
|
response = self.model.chat( |
|
self.tokenizer, |
|
pixel_values, |
|
f"<image>\n{input['prompt']}", |
|
generation_config, |
|
) |
|
|
|
predictions.append(response) |
|
return {"predictions": predictions} |