--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-cased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9267369114257491 - name: Recall type: recall value: 0.9473241332884551 - name: F1 type: f1 value: 0.9369174434087884 - name: Accuracy type: accuracy value: 0.9852239948195679 --- # distilbert-base-cased-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1060 - Precision: 0.9267 - Recall: 0.9473 - F1: 0.9369 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2147483647 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1012 | 1.0 | 1756 | 0.0895 | 0.8924 | 0.9194 | 0.9057 | 0.9767 | | 0.0491 | 2.0 | 3512 | 0.0818 | 0.9070 | 0.9260 | 0.9164 | 0.9801 | | 0.0334 | 3.0 | 5268 | 0.0818 | 0.9170 | 0.9315 | 0.9242 | 0.9821 | | 0.0235 | 4.0 | 7024 | 0.0893 | 0.9074 | 0.9364 | 0.9216 | 0.9815 | | 0.0167 | 5.0 | 8780 | 0.0879 | 0.9106 | 0.9414 | 0.9258 | 0.9828 | | 0.0071 | 6.0 | 10536 | 0.0955 | 0.9172 | 0.9435 | 0.9301 | 0.9836 | | 0.0039 | 7.0 | 12292 | 0.1016 | 0.9209 | 0.9423 | 0.9315 | 0.9835 | | 0.0021 | 8.0 | 14048 | 0.1043 | 0.9294 | 0.9463 | 0.9378 | 0.9847 | | 0.0014 | 9.0 | 15804 | 0.1064 | 0.9271 | 0.9475 | 0.9372 | 0.9853 | | 0.0005 | 10.0 | 17560 | 0.1060 | 0.9267 | 0.9473 | 0.9369 | 0.9852 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3