--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: resnet-50-finetuned-FBark results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9906542056074766 - name: F1 type: f1 value: 0.9922719141323793 - name: Precision type: precision value: 0.990909090909091 - name: Recall type: recall value: 0.9939393939393939 --- # resnet-50-finetuned-FBark This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9907 - F1: 0.9923 - Loss: 0.0579 - Precision: 0.9909 - Recall: 0.9939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 35 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.0+cpu - Datasets 2.19.0 - Tokenizers 0.15.1