--- license: apache-2.0 base_model: facebook/dinov2-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: dinov2-finetuned-har results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8878306878306879 --- # dinov2-finetuned-har This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3670 - Accuracy: 0.8878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8886 | 1.0 | 42 | 0.4975 | 0.8471 | | 0.632 | 2.0 | 84 | 0.3670 | 0.8878 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1