File size: 7,026 Bytes
60b6dc7 c3b6556 0fff8d2 d48e82c 0fff8d2 60b6dc7 0fff8d2 60b6dc7 0fff8d2 60b6dc7 0fff8d2 d48e82c 0fff8d2 c3b6556 67d744a c3b6556 d48e82c c3b6556 d48e82c c3b6556 d48e82c 0fff8d2 60b6dc7 c3b6556 60b6dc7 c3b6556 60b6dc7 c3b6556 60b6dc7 c3b6556 60b6dc7 c3b6556 60b6dc7 c3b6556 60b6dc7 c3b6556 0fff8d2 c3b6556 60b6dc7 0fff8d2 60b6dc7 0fff8d2 60b6dc7 0fff8d2 c3b6556 60b6dc7 c3b6556 60b6dc7 c3b6556 60b6dc7 c3b6556 60b6dc7 0fff8d2 c3b6556 60b6dc7 c3b6556 60b6dc7 0fff8d2 c3b6556 60b6dc7 c3b6556 0fff8d2 c3b6556 0fff8d2 c3b6556 0fff8d2 c3b6556 0fff8d2 60b6dc7 c3b6556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
from typing import Optional, Sequence
from torch import nn, Tensor
from transformers import PretrainedConfig, PreTrainedModel, AutoConfig, AutoModel
# from huggingface_hub import notebook_login
# notebook_login()
# AutoEncoderConfig.register_for_auto_class()
# AutoEncoder.register_for_auto_class("AutoModel")
# AutoConfig.register("autoencoder", AutoEncoderConfig)
# AutoModel.register(AutoEncoderConfig, AutoModel)
# autoencoder.push_to_hub("autoencoder")
# from transformers import AutoConfig, AutoModel
# config = AutoConfig.from_pretrained("amaye15/autoencoder", trust_remote_code = True)
# autoencoder = AutoModel.from_config(config, trust_remote_code = True)
class AutoEncoderConfig(PretrainedConfig):
"""
Configuration class for AutoEncoder. This class stores the parameters for the autoencoder model.
Attributes:
input_dim (int): The dimensionality of the input data (default: 128).
latent_dim (int): The dimensionality of the latent representation (default: 64).
layer_types (str): The type of layers used, e.g., 'linear', 'lstm', 'gru', 'rnn' (default: 'linear').
dropout_rate (float): The dropout rate applied after each layer (except for the last layer) (default: 0.1).
num_layers (int): The number of layers in the encoder/decoder (default: 3).
compression_rate (float): Factor by which to compress the dimensions through layers (default: 0.5).
bidirectional (bool): Whether the sequence layers should be bidirectional (default: False).
"""
model_type = "autoencoder"
def __init__(
self,
input_dim: int = 128,
latent_dim: int = 64,
layer_types: str = 'linear',
dropout_rate: float = 0.1,
num_layers: int = 3,
compression_rate: float = 0.5,
bidirectional: bool = False,
**kwargs
):
super().__init__(**kwargs)
self.input_dim = input_dim
self.latent_dim = latent_dim
self.layer_types = layer_types
self.dropout_rate = dropout_rate
self.num_layers = num_layers
self.compression_rate = compression_rate
self.bidirectional = bidirectional
def create_layers(
model_section: str,
layer_types: str,
input_dim: int,
latent_dim: int,
num_layers: int,
dropout_rate: float,
compression_rate: float,
bidirectional: bool
) -> nn.Sequential:
"""
Creates a sequence of layers for the encoder or decoder part of the autoencoder.
Args:
model_section (str): A string indicating whether this is for 'encoder' or 'decoder'.
layer_types (str): The type of layers to include in the sequence.
input_dim (int): The input dimension for the first layer.
latent_dim (int): The target dimension for the latent representation.
num_layers (int): The number of layers to create.
dropout_rate (float): The dropout rate to apply between layers.
compression_rate (float): The compression rate for reducing dimensions through layers.
bidirectional (bool): Whether the RNN layers should be bidirectional.
Returns:
A nn.Sequential module containing the created layers.
"""
layers = []
current_dim = input_dim
input_dimensions = []
output_dimensions = []
for _ in range(num_layers):
input_dimensions.append(current_dim)
next_dim = max(int(current_dim * compression_rate), latent_dim)
current_dim = next_dim
output_dimensions.append(current_dim)
output_dimensions[num_layers - 1] = latent_dim
if model_section == "decoder":
input_dimensions, output_dimensions = output_dimensions, input_dimensions
input_dimensions.reverse()
output_dimensions.reverse()
if bidirectional and (layer_types in ['lstm', 'rnn', 'gru']):
output_dimensions = [2 * value for value in output_dimensions]
for idx, (input_dim, output_dim) in enumerate(zip(input_dimensions, output_dimensions)):
if layer_types == 'linear':
layers.append(nn.Linear(input_dim, output_dim))
elif layer_types == 'lstm':
layers.append(nn.LSTM(input_dim, output_dim // (2 if bidirectional else 1), batch_first=True, bidirectional=bidirectional))
elif layer_types == 'rnn':
layers.append(nn.RNN(input_dim, output_dim // (2 if bidirectional else 1), batch_first=True, bidirectional=bidirectional))
elif layer_types == 'gru':
layers.append(nn.GRU(input_dim, output_dim // (2 if bidirectional else 1), batch_first=True, bidirectional=bidirectional))
if (idx != num_layers - 1) and (dropout_rate is not None):
layers.append(nn.Dropout(dropout_rate))
return nn.Sequential(*layers)
class AutoEncoder(PreTrainedModel):
"""
AutoEncoder model for creating an encoder-decoder architecture.
Inherits from PreTrainedModel to utilize its pretrained model features from the Hugging Face library.
Args:
config (AutoEncoderConfig): The configuration instance with all model parameters.
"""
config_class = AutoEncoderConfig
def __init__(self, config: AutoEncoderConfig):
super(AutoEncoder, self).__init__(config)
self.encoder = create_layers(
"encoder",
config.layer_types, config.input_dim, config.latent_dim,
config.num_layers, config.dropout_rate, config.compression_rate,
config.bidirectional
)
# Assuming symmetry between encoder and decoder
self.decoder = create_layers(
"decoder",
config.layer_types, config.input_dim, config.latent_dim,
config.num_layers, config.dropout_rate, config.compression_rate,
config.bidirectional
)
def forward(self, x: Tensor) -> Tensor:
"""
Forward pass through the autoencoder.
Args:
x (Tensor): The input tensor to encode and decode.
Returns:
A Tensor that is the output of the decoder.
"""
# Assuming self.config.layer_types contains only a single layer type as a string.
# If using sequence models, handle each layer's outputs
if self.config.layer_types in ['lstm', 'rnn', 'gru']:
for layer in self.encoder:
if isinstance(layer, nn.LSTM):
x, (h_n, c_n) = layer(x)
elif isinstance(layer, nn.RNN) or isinstance(layer, nn.GRU):
x, h_o = layer(x)
else:
x = layer(x)
for layer in self.decoder:
if isinstance(layer, nn.LSTM):
x, (h_n, c_n) = layer(x)
elif isinstance(layer, nn.RNN) or isinstance(layer, nn.GRU):
x, h_o = layer(x)
else:
x = layer(x)
else:
x = self.encoder(x)
x = self.decoder(x)
return x
|