File size: 12,394 Bytes
ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 7f81513 ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 72eb84b ecec5b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
"""
Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
SPDX-License-Identifier: MIT
"""
import argparse
import copy
from datetime import datetime
import json
import os
import time
from brevitas.core.zero_point import ParameterFromStatsFromParameterZeroPoint
from brevitas.quant.experimental.float_quant_fnuz import Fp8e4m3FNUZActPerTensorFloat
from brevitas.quant.scaled_int import Int8ActPerTensorFloat
from brevitas.quant.shifted_scaled_int import ShiftedUint8WeightPerChannelFloat
from brevitas_examples.common.generative.nn import LoRACompatibleQuantConv2d, LoRACompatibleQuantLinear
from diffusers import DiffusionPipeline
from diffusers.models.attention_processor import Attention
from diffusers.models.attention_processor import AttnProcessor
import pandas as pd
import torch
from torch import nn
from tqdm import tqdm
import brevitas.nn as qnn
from brevitas.graph.base import ModuleToModuleByClass
from brevitas.graph.calibrate import bias_correction_mode
from brevitas.graph.calibrate import calibration_mode
from brevitas.graph.equalize import activation_equalization_mode
from brevitas.graph.quantize import layerwise_quantize
from brevitas.inject.enum import StatsOp
from brevitas.nn.equalized_layer import EqualizedModule
from brevitas.utils.torch_utils import KwargsForwardHook
import brevitas.config as config
from brevitas_examples.common.parse_utils import add_bool_arg
from brevitas_examples.stable_diffusion.sd_quant.export import export_quant_params
from brevitas_examples.stable_diffusion.sd_quant.nn import QuantAttention
from brevitas_examples.stable_diffusion.mlperf_evaluation.accuracy import compute_mlperf_fid
TEST_SEED = 123456
torch.manual_seed(TEST_SEED)
class WeightQuant(ShiftedUint8WeightPerChannelFloat):
narrow_range = False
scaling_min_val = 1e-4
quantize_zero_point = True
scaling_impl_type = 'parameter_from_stats'
zero_point_impl = ParameterFromStatsFromParameterZeroPoint
class InputQuant(Int8ActPerTensorFloat):
scaling_stats_op = StatsOp.MAX
class OutputQuant(Fp8e4m3FNUZActPerTensorFloat):
scaling_stats_op = StatsOp.MAX
NEGATIVE_PROMPTS = ["normal quality, low quality, worst quality, low res, blurry, nsfw, nude"]
def load_calib_prompts(calib_data_path, sep="\t"):
df = pd.read_csv(calib_data_path, sep=sep)
lst = df["caption"].tolist()
return lst
def run_val_inference(
pipe,
prompts,
guidance_scale,
total_steps,
test_latents=None):
with torch.no_grad():
for prompt in tqdm(prompts):
# We don't want to generate any image, so we return only the latent encoding pre VAE
pipe(
prompt,
negative_prompt=NEGATIVE_PROMPTS[0],
latents=test_latents,
output_type='latent',
guidance_scale=guidance_scale,
num_inference_steps=total_steps)
def main(args):
dtype = getattr(torch, args.dtype)
calibration_prompts = load_calib_prompts(args.calibration_prompt_path)
assert args.calibration_prompts <= len(calibration_prompts) , f"--calibration-prompts must be <= {len(calibration_prompts)}"
calibration_prompts = calibration_prompts[:args.calibration_prompts]
latents = torch.load(args.path_to_latents).to(torch.float16)
# Create output dir. Move to tmp if None
ts = datetime.fromtimestamp(time.time())
str_ts = ts.strftime("%Y%m%d_%H%M%S")
output_dir = os.path.join(args.output_path, f'{str_ts}')
os.mkdir(output_dir)
print(f"Saving results in {output_dir}")
# Dump args to json
with open(os.path.join(output_dir, 'args.json'), 'w') as fp:
json.dump(vars(args), fp)
# Load model from float checkpoint
print(f"Loading model from {args.model}...")
variant = 'fp16' if dtype == torch.float16 else None
pipe = DiffusionPipeline.from_pretrained(args.model, torch_dtype=dtype, variant=variant, use_safetensors=True)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.vae.config.force_upcast=True
print(f"Model loaded from {args.model}.")
# Move model to target device
print(f"Moving model to {args.device}...")
pipe = pipe.to(args.device)
# Enable attention slicing
if args.attention_slicing:
pipe.enable_attention_slicing()
# Extract list of layers to avoid
blacklist = []
for name, _ in pipe.unet.named_modules():
if 'time_emb' in name:
blacklist.append(name.split('.')[-1])
print(f"Blacklisted layers: {blacklist}")
# Make sure there all LoRA layers are fused first, otherwise raise an error
for m in pipe.unet.modules():
if hasattr(m, 'lora_layer') and m.lora_layer is not None:
raise RuntimeError("LoRA layers should be fused in before calling into quantization.")
pipe.set_progress_bar_config(disable=True)
if args.load_checkpoint is not None:
with load_quant_model_mode(pipe.unet):
pipe = pipe.to('cpu')
print(f"Loading checkpoint: {args.load_checkpoint}... ", end="")
pipe.unet.load_state_dict(torch.load(args.load_checkpoint, map_location='cpu'))
print(f"Checkpoint loaded!")
pipe = pipe.to(args.device)
if args.load_checkpoint is not None:
# Don't run full activation equalization if we're loading a quantized checkpoint
num_ae_prompts = 2
else:
num_ae_prompts = len(calibration_prompts)
with activation_equalization_mode(
pipe.unet,
alpha=args.act_eq_alpha,
layerwise=True,
blacklist_layers=blacklist if args.exclude_blacklist_act_eq else None,
add_mul_node=True):
# Workaround to expose `in_features` attribute from the Hook Wrapper
for m in pipe.unet.modules():
if isinstance(m, KwargsForwardHook) and hasattr(m.module, 'in_features'):
m.in_features = m.module.in_features
total_steps = args.calibration_steps
run_val_inference(
pipe,
calibration_prompts[:num_ae_prompts],
total_steps=total_steps,
test_latents=latents,
guidance_scale=args.guidance_scale)
# Workaround to expose `in_features` attribute from the EqualizedModule Wrapper
for m in pipe.unet.modules():
if isinstance(m, EqualizedModule) and hasattr(m.layer, 'in_features'):
m.in_features = m.layer.in_features
quant_layer_kwargs = {
'input_quant': InputQuant, 'weight_quant': WeightQuant, 'dtype': dtype, 'device': args.device, 'input_dtype': dtype, 'input_device': args.device}
quant_linear_kwargs = copy.deepcopy(quant_layer_kwargs)
if args.quantize_sdp:
output_quant = OutputQuant
rewriter = ModuleToModuleByClass(
Attention,
QuantAttention,
softmax_output_quant=output_quant,
query_dim=lambda module: module.to_q.in_features,
dim_head=lambda module: int(1 / (module.scale ** 2)),
processor=AttnProcessor(),
is_equalized=True)
config.IGNORE_MISSING_KEYS = True
pipe.unet = rewriter.apply(pipe.unet)
config.IGNORE_MISSING_KEYS = False
pipe.unet = pipe.unet.to(args.device)
pipe.unet = pipe.unet.to(dtype)
# quant_kwargs = layer_map[torch.nn.Linear][1]
what_to_quantize = ['to_q', 'to_k', 'to_v']
quant_linear_kwargs['output_quant'] = lambda module, name: output_quant if any(ending in name for ending in what_to_quantize) else None
quant_linear_kwargs['output_dtype'] = dtype
quant_linear_kwargs['output_device'] = args.device
layer_map = {
nn.Linear: (qnn.QuantLinear, quant_linear_kwargs),
nn.Conv2d: (qnn.QuantConv2d, quant_layer_kwargs),
'diffusers.models.lora.LoRACompatibleLinear':
(LoRACompatibleQuantLinear, quant_linear_kwargs),
'diffusers.models.lora.LoRACompatibleConv': (LoRACompatibleQuantConv2d, quant_layer_kwargs)}
pipe.unet = layerwise_quantize(
model=pipe.unet, compute_layer_map=layer_map, name_blacklist=blacklist)
print("Model quantization applied.")
pipe.set_progress_bar_config(disable=True)
if args.load_checkpoint is None:
print("Applying activation calibration")
with torch.no_grad(), calibration_mode(pipe.unet):
run_val_inference(
pipe,
calibration_prompts,
total_steps=args.calibration_steps,
test_latents=latents,
guidance_scale=args.guidance_scale)
print("Applying bias correction")
with torch.no_grad(), bias_correction_mode(pipe.unet):
run_val_inference(
pipe,
calibration_prompts,
total_steps=args.calibration_steps,
test_latents=latents,
guidance_scale=args.guidance_scale)
if args.checkpoint_name is not None:
torch.save(pipe.unet.state_dict(), os.path.join(output_dir, args.checkpoint_name))
# Perform inference
if args.validation_prompts > 0:
print(f"Computing validation accuracy")
compute_mlperf_fid(args.model, args.path_to_coco, pipe, args.validation_prompts, output_dir)
if args.export_target:
pipe.unet.to('cpu').to(dtype)
export_quant_params(pipe, output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Stable Diffusion quantization')
parser.add_argument(
'-m',
'--model',
type=str,
default=None,
help='Path or name of the model.')
parser.add_argument(
'-d', '--device', type=str, default='cuda:0', help='Target device for quantized model.')
parser.add_argument(
'--calibration-prompt-path', type=str, default=None, help='Path to calibration prompt')
parser.add_argument(
'--calibration-prompts',
type=int,
default=500,
help='Number of prompts to use for calibration. Default: %(default)s')
parser.add_argument(
'--validation-prompts',
type=int,
default=0,
help='Number of prompt to use for validation. Default: %(default)s')
parser.add_argument(
'--path-to-coco',
type=str,
default=None,
help=
'Path to MLPerf compliant Coco dataset. Required when the --validation-prompts > 0 flag is set. Default: None'
)
parser.add_argument(
'--checkpoint-name',
type=str,
default=None,
help=
'Name to use to store the checkpoint in the output dir. If not provided, no checkpoint is saved.'
)
parser.add_argument(
'--load-checkpoint',
type=str,
default=None,
help='Path to checkpoint to load. If provided, PTQ techniques are skipped.')
parser.add_argument(
'--path-to-latents',
type=str,
required=True,
help=
'Path to pre-defined latents.')
parser.add_argument('--guidance-scale', type=float, default=8., help='Guidance scale.')
parser.add_argument(
'--calibration-steps', type=float, default=8, help='Steps used during calibration')
add_bool_arg(
parser,
'output-path',
str_true=True,
default='.',
help='Path where to generate output folder.')
parser.add_argument(
'--dtype',
default='float16',
choices=['float32', 'float16', 'bfloat16'],
help='Model Dtype, choices are float32, float16, bfloat16. Default: float16')
add_bool_arg(
parser,
'attention-slicing',
default=False,
help='Enable attention slicing. Default: Disabled')
add_bool_arg(
parser,
'export-target',
default=True,
help='Export flow.')
parser.add_argument(
'--act-eq-alpha',
type=float,
default=0.9,
help='Alpha for activation equalization. Default: 0.9')
add_bool_arg(parser, 'quantize-sdp', default=False, help='Quantize SDP. Default: Disabled')
add_bool_arg(
parser,
'exclude-blacklist-act-eq',
default=False,
help='Exclude unquantized layers from activation equalization. Default: Disabled')
args = parser.parse_args()
print("Args: " + str(vars(args)))
main(args)
|