nickfraser
commited on
Commit
•
161df88
1
Parent(s):
3f5851c
Remove potential overflow / saturation error.
Browse files- math_model.py +4 -4
math_model.py
CHANGED
@@ -52,8 +52,8 @@ class QuantLinear(nn.Module):
|
|
52 |
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
53 |
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
54 |
quant_output = torch.nn.functional.linear(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.linear quantizing the output to int8
|
55 |
-
correction = torch.sum(quant_input, dim=-1, keepdim=True).to(torch.int32) *
|
56 |
-
quant_output = quant_output
|
57 |
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1]*(quant_output.ndim-1) + [(self.weight_scale * self.input_scale).nelement()]), 0.0)
|
58 |
output += self.linear.bias
|
59 |
return output
|
@@ -113,8 +113,8 @@ class QuantConv2d(nn.Module):
|
|
113 |
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
114 |
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
115 |
quant_output = torch.nn.functional.conv2d(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.conv2d quantizing the output to int8
|
116 |
-
correction = quant_output[:,-1,:,:] *
|
117 |
-
quant_output = quant_output[:,:-1,:,:]
|
118 |
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1, (self.weight_scale * self.input_scale).nelement()] + [1]*(quant_output.ndim-2)), 0.0)
|
119 |
output += self.conv2d.bias.view([1, self.conv2d.bias.nelement()] + [1]*(quant_output.ndim-2))
|
120 |
return output
|
|
|
52 |
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
53 |
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
54 |
quant_output = torch.nn.functional.linear(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.linear quantizing the output to int8
|
55 |
+
correction = torch.sum(quant_input, dim=-1, keepdim=True).to(torch.int32) * weight_zp_int8.to(torch.int8).view([1]*(quant_input.ndim-1) + [self.weight_zp.nelement()]) # Correct for weight zero-point
|
56 |
+
quant_output = quant_output - correction
|
57 |
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1]*(quant_output.ndim-1) + [(self.weight_scale * self.input_scale).nelement()]), 0.0)
|
58 |
output += self.linear.bias
|
59 |
return output
|
|
|
113 |
fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline
|
114 |
quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8)
|
115 |
quant_output = torch.nn.functional.conv2d(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.conv2d quantizing the output to int8
|
116 |
+
correction = quant_output[:,-1,:,:] * weight_zp_int8.to(torch.int8).view([1, self.weight_zp.nelement()] + [1]*(quant_output.ndim-2)) # Correct zero-point for weight
|
117 |
+
quant_output = quant_output[:,:-1,:,:] - correction
|
118 |
output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1, (self.weight_scale * self.input_scale).nelement()] + [1]*(quant_output.ndim-2)), 0.0)
|
119 |
output += self.conv2d.bias.view([1, self.conv2d.bias.nelement()] + [1]*(quant_output.ndim-2))
|
120 |
return output
|