import torch.nn as nn import torch def quantize(tensor, scale, zero_point, is_asym=False): if is_asym: clamp_min, clamp_max = torch.tensor(0.), torch.tensor(255.) else: clamp_min, clamp_max = torch.tensor(-128.), torch.tensor(127.) quant_tensor = torch.clamp(torch.round(tensor/scale + zero_point), clamp_min, clamp_max) return quant_tensor def dequantize(tensor, scale, zero_point): return (tensor - zero_point) * scale class QuantLinear(nn.Module): def __init__(self, in_ch, out_ch, quant_param): super().__init__() mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape']) self.register_buffer('mul_factor', mul_factor) self.linear = nn.Linear(in_ch, out_ch) weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape']) weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape']) input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape']) input_zp = torch.tensor(quant_param['input_zp']).view(quant_param['input_zp_shape']) self.register_buffer('weight_scale', weight_scale) self.register_buffer('weight_zp', weight_zp) self.register_buffer('input_scale', input_scale) self.register_buffer('input_zp', input_zp) # I.e., "fake quantization" def qdq_forward(self, x): scaled_x = x * self.mul_factor quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True) quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False) dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp) dequantized_input = dequantize(quant_input, self.input_scale, self.input_zp) out = torch.nn.functional.linear(dequantized_input, dequantized_weight, self.linear.bias) return out # Accelerated version def qop_forward(self, x): # With an integer linear kernel, if the weight zero point is not zero, # A correction term must be calculated to correct the output. # The correction term calculated as follows: # - sum the input tensor across the dot-product dimentions: (e.g., `torch.sum(quant_input, dim=-1)`) # - multiply this sum with every weight zero-point (e.g., `torch.sum(quant_input, dim=-1) * self.weight_zp` # - Subtract from previous output (e.g., `quant_output -= torch.sum(quant_input, dim=-1) * self.weight_zp`) # - All other code is just to make sure the broadcasting semantics work correctly weight_zp_int8 = (self.weight_zp - 128).to(torch.int8).to(torch.float32) # Conversion from uint8 -> int8, can be computed offline quant_weight = quantize(self.linear.weight, self.weight_scale, weight_zp_int8, is_asym=False).to(torch.int8) fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8) quant_output = torch.nn.functional.linear(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.linear quantizing the output to int8 correction = torch.sum(quant_input, dim=-1, keepdim=True).to(torch.int32) * weight_zp_int8.to(torch.int8).view([1]*(quant_input.ndim-1) + [self.weight_zp.nelement()]) # Correct for weight zero-point quant_output = quant_output - correction output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1]*(quant_output.ndim-1) + [(self.weight_scale * self.input_scale).nelement()]), 0.0) output += self.linear.bias return output def forward(self, x, qop=False): if qop: return self.qop_forward(x) else: return self.qdq_forward(x) class QuantConv2d(nn.Module): def __init__(self, in_ch, out_ch, kernel_size, quant_param): super().__init__() mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape']) self.register_buffer('mul_factor', mul_factor) self.conv2d = nn.Conv2d(in_ch, out_ch, kernel_size) weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape']) weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape']) input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape']) input_zp = torch.tensor(quant_param['input_zp']).view(quant_param['input_zp_shape']) self.register_buffer('weight_scale', weight_scale) self.register_buffer('weight_zp', weight_zp) self.register_buffer('input_scale', input_scale) self.register_buffer('input_zp', input_zp) # I.e., "fake quantization" def qdq_forward(self, x): scaled_x = x * self.mul_factor quant_weight = quantize(self.conv2d.weight, self.weight_scale, self.weight_zp, is_asym=True) quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False) dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp) dequantized_input = dequantize(quant_input, self.input_scale, self.input_zp) out = torch.nn.functional.conv2d(dequantized_input, dequantized_weight, self.conv2d.bias) return out # Accelerated version def qop_forward(self, x): # With an integer conv2d kernel, if the weight zero point is not zero, # A correction term must be calculated to correct the output. # Conceptually, it's identical to the linear case except that it's difficult # to reduce the input across the dot-product dimension. This leaves us with two obvious options: # 1. Manually compute the reduction via Im2Col -> `torch.sum` # 2. Add an extra _output channel_ to the convolution with a kernel made from all ones (e.g., `torch.ones()`) # In this example, I've used option #2. # The correction term is then calculated as follows: # - Add an extra output channel to the weight tensor with all values equal to 1 to calculate the sum (e.g., `torch.cat((quant_weight, torch.ones(shape)), dim=0)`) # - Extract the sum from the output tensor (e.g., `sum = quant_output[:,-1,:,:]`) # - multiply this sum with every weight zero-point (e.g., `sum * self.weight_zp` # - Subtract from previous output (e.g., `quant_output -= sum * self.weight_zp`) # - All other code is just to make sure the broadcasting semantics work correctly weight_zp_int8 = (self.weight_zp - 128).to(torch.int8).to(torch.float32) # Conversion from uint8 -> int8, can be computed offline quant_weight = quantize(self.conv2d.weight, self.weight_scale, weight_zp_int8, is_asym=False).to(torch.int8) b_shape = list(quant_weight.shape) # Used for weight zero-point correction b_shape[0] = 1 # Used for weight zero-point correction weight_cat = torch.ones((1,1,1,1)).broadcast_to(b_shape).to(torch.int8) # Used for weight zero-point correction quant_weight = torch.cat((quant_weight,weight_cat),dim=0).to(torch.int8) # Create extra output channel, used for weight zero-point correction fused_input_scale = self.input_scale / self.mul_factor # Fuse SmoothQuant and input scales, can be computed offline quant_input = quantize(x, fused_input_scale, self.input_zp, is_asym=False).to(torch.int8) quant_output = torch.nn.functional.conv2d(quant_input.to(torch.float32), quant_weight.to(torch.float32), None).to(torch.int32) # Convert inputs to FP32 to avoid F.conv2d quantizing the output to int8 correction = quant_output[:,-1,:,:] * weight_zp_int8.to(torch.int8).view([1, self.weight_zp.nelement()] + [1]*(quant_output.ndim-2)) # Correct zero-point for weight quant_output = quant_output[:,:-1,:,:] - correction output = dequantize(quant_output, (self.weight_scale * self.input_scale).view([1, (self.weight_scale * self.input_scale).nelement()] + [1]*(quant_output.ndim-2)), 0.0) output += self.conv2d.bias.view([1, self.conv2d.bias.nelement()] + [1]*(quant_output.ndim-2)) return output def forward(self, x, qop=False): if qop: return self.qop_forward(x) else: return self.qdq_forward(x)