--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy base_model: bert-base-cased model-index: - name: bert-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - type: precision value: 0.9356550580431178 name: Precision - type: recall value: 0.9495119488387749 name: Recall - type: f1 value: 0.9425325760106917 name: F1 - type: accuracy value: 0.9858421145581916 name: Accuracy --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 - Precision: 0.9357 - Recall: 0.9495 - F1: 0.9425 - Accuracy: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0872 | 1.0 | 1756 | 0.0692 | 0.9180 | 0.9347 | 0.9263 | 0.9827 | | 0.0338 | 2.0 | 3512 | 0.0615 | 0.9328 | 0.9467 | 0.9397 | 0.9854 | | 0.024 | 3.0 | 5268 | 0.0616 | 0.9357 | 0.9495 | 0.9425 | 0.9858 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6