amitkayal commited on
Commit
3064951
1 Parent(s): 229e852

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - hi
4
+ license: apache-2.0
5
+ tags:
6
+ - whisper-event
7
+ - generated_from_trainer
8
+ datasets:
9
+ - mozilla-foundation/common_voice_11_0
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: whisper-small-hi
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice 11.0
20
+ type: mozilla-foundation/common_voice_11_0
21
+ config: hi
22
+ split: test
23
+ args: hi
24
+ metrics:
25
+ - name: Wer
26
+ type: wer
27
+ value: 21.749971340135275
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # whisper-small-hi
34
+
35
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.5191
38
+ - Wer: 21.7500
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 1e-05
58
+ - train_batch_size: 8
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 4
62
+ - total_train_batch_size: 32
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - training_steps: 3000
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
71
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|
72
+ | 0.0055 | 7.02 | 1000 | 0.4214 | 22.0939 |
73
+ | 0.0003 | 14.03 | 2000 | 0.4978 | 21.7070 |
74
+ | 0.0002 | 22.0 | 3000 | 0.5191 | 21.7500 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.26.0.dev0
80
+ - Pytorch 1.10.0
81
+ - Datasets 2.7.1.dev0
82
+ - Tokenizers 0.13.2