Upload model
Browse files- README.md +199 -0
- config.json +35 -0
- configuration_t5mimo.py +152 -0
- model.safetensors +3 -0
- modeling_t5mimo.py +1751 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"T5MIMOModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_t5mimo.T5MIMOConfig",
|
7 |
+
"AutoModel": "modeling_t5mimo.T5MIMOModel"
|
8 |
+
},
|
9 |
+
"classifier_dropout": 0.0,
|
10 |
+
"d_ff": 1024,
|
11 |
+
"d_kv": 64,
|
12 |
+
"d_model": 256,
|
13 |
+
"decoder_start_token_id": 0,
|
14 |
+
"dense_act_fn": "relu",
|
15 |
+
"dropout_rate": 0.1,
|
16 |
+
"eos_token_id": 1,
|
17 |
+
"feed_forward_proj": "relu",
|
18 |
+
"initializer_factor": 0.05,
|
19 |
+
"is_encoder_decoder": true,
|
20 |
+
"is_gated_act": false,
|
21 |
+
"layer_norm_epsilon": 1e-06,
|
22 |
+
"model_type": "t5",
|
23 |
+
"num_decoder_layers": 4,
|
24 |
+
"num_filters": 64,
|
25 |
+
"num_heads": 4,
|
26 |
+
"num_layers": 4,
|
27 |
+
"num_seqs": 3,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"relative_attention_max_distance": 128,
|
30 |
+
"relative_attention_num_buckets": 32,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.41.1",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 4096
|
35 |
+
}
|
configuration_t5mimo.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Mapping
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
from transformers.onnx import OnnxSeq2SeqConfigWithPast
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class T5MIMOConfig(PretrainedConfig):
|
11 |
+
r"""
|
12 |
+
This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to
|
13 |
+
instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a
|
14 |
+
configuration with the defaults will yield a similar configuration to that of the T5
|
15 |
+
[google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture.
|
16 |
+
|
17 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
18 |
+
documentation from [`PretrainedConfig`] for more information.
|
19 |
+
|
20 |
+
Arguments:
|
21 |
+
vocab_size (`int`, *optional*, defaults to 32128):
|
22 |
+
Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
|
23 |
+
`inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`].
|
24 |
+
d_model (`int`, *optional*, defaults to 512):
|
25 |
+
Size of the encoder layers and the pooler layer.
|
26 |
+
d_kv (`int`, *optional*, defaults to 64):
|
27 |
+
Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
|
28 |
+
be defined as `num_heads * d_kv`.
|
29 |
+
d_ff (`int`, *optional*, defaults to 2048):
|
30 |
+
Size of the intermediate feed forward layer in each `T5Block`.
|
31 |
+
num_layers (`int`, *optional*, defaults to 6):
|
32 |
+
Number of hidden layers in the Transformer encoder.
|
33 |
+
num_decoder_layers (`int`, *optional*):
|
34 |
+
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
|
35 |
+
num_heads (`int`, *optional*, defaults to 8):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
|
38 |
+
The number of buckets to use for each attention layer.
|
39 |
+
relative_attention_max_distance (`int`, *optional*, defaults to 128):
|
40 |
+
The maximum distance of the longer sequences for the bucket separation.
|
41 |
+
dropout_rate (`float`, *optional*, defaults to 0.1):
|
42 |
+
The ratio for all dropout layers.
|
43 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
44 |
+
The dropout ratio for classifier.
|
45 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
46 |
+
The epsilon used by the layer normalization layers.
|
47 |
+
initializer_factor (`float`, *optional*, defaults to 1):
|
48 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
49 |
+
testing).
|
50 |
+
feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
|
51 |
+
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the
|
52 |
+
`"gated-gelu"` feed forward projection. Original T5 uses `"relu"`.
|
53 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
55 |
+
"""
|
56 |
+
|
57 |
+
model_type = "t5"
|
58 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
59 |
+
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
|
60 |
+
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
vocab_size=32128,
|
64 |
+
d_model=512,
|
65 |
+
d_kv=64,
|
66 |
+
d_ff=2048,
|
67 |
+
num_layers=6,
|
68 |
+
num_decoder_layers=None,
|
69 |
+
num_heads=8,
|
70 |
+
relative_attention_num_buckets=32,
|
71 |
+
relative_attention_max_distance=128,
|
72 |
+
dropout_rate=0.1,
|
73 |
+
layer_norm_epsilon=1e-6,
|
74 |
+
initializer_factor=1.0,
|
75 |
+
feed_forward_proj="relu",
|
76 |
+
is_encoder_decoder=True,
|
77 |
+
use_cache=True,
|
78 |
+
pad_token_id=0,
|
79 |
+
eos_token_id=1,
|
80 |
+
decoder_start_token_id = 0,
|
81 |
+
classifier_dropout=0.0,
|
82 |
+
num_seqs=3,
|
83 |
+
num_filters=64,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
self.vocab_size = vocab_size
|
87 |
+
self.d_model = d_model
|
88 |
+
self.d_kv = d_kv
|
89 |
+
self.d_ff = d_ff
|
90 |
+
self.num_layers = num_layers
|
91 |
+
self.num_decoder_layers = (
|
92 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
93 |
+
) # default = symmetry
|
94 |
+
self.num_heads = num_heads
|
95 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
96 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
97 |
+
self.dropout_rate = dropout_rate
|
98 |
+
self.classifier_dropout = classifier_dropout
|
99 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
100 |
+
self.initializer_factor = initializer_factor
|
101 |
+
self.feed_forward_proj = feed_forward_proj
|
102 |
+
self.use_cache = use_cache
|
103 |
+
self.num_seqs = num_seqs
|
104 |
+
self.num_filters = num_filters
|
105 |
+
|
106 |
+
act_info = self.feed_forward_proj.split("-")
|
107 |
+
self.dense_act_fn = act_info[-1]
|
108 |
+
self.is_gated_act = act_info[0] == "gated"
|
109 |
+
|
110 |
+
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
|
111 |
+
raise ValueError(
|
112 |
+
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. "
|
113 |
+
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
|
114 |
+
"'gated-gelu' or 'relu'"
|
115 |
+
)
|
116 |
+
|
117 |
+
# for backwards compatibility
|
118 |
+
if feed_forward_proj == "gated-gelu":
|
119 |
+
self.dense_act_fn = "gelu_new"
|
120 |
+
|
121 |
+
super().__init__(
|
122 |
+
pad_token_id=pad_token_id,
|
123 |
+
eos_token_id=eos_token_id,
|
124 |
+
decoder_start_token_id=decoder_start_token_id,
|
125 |
+
is_encoder_decoder=is_encoder_decoder,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
class T5MIMOOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
131 |
+
@property
|
132 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
133 |
+
common_inputs = {
|
134 |
+
"input_ids": {0: "batch", 1: "encoder_sequence"},
|
135 |
+
"attention_mask": {0: "batch", 1: "encoder_sequence"},
|
136 |
+
}
|
137 |
+
if self.use_past:
|
138 |
+
common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
|
139 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
140 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
|
141 |
+
else:
|
142 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
143 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
|
144 |
+
|
145 |
+
if self.use_past:
|
146 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
147 |
+
|
148 |
+
return common_inputs
|
149 |
+
|
150 |
+
@property
|
151 |
+
def default_onnx_opset(self) -> int:
|
152 |
+
return 13
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9d97da94a794f0b0aad1566b9e13205267ea4b3b70ae8c6cd147e6fe6e651cb
|
3 |
+
size 33588312
|
modeling_t5mimo.py
ADDED
@@ -0,0 +1,1751 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import warnings
|
4 |
+
from typing import Optional, Tuple, Union
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import CrossEntropyLoss
|
8 |
+
from transformers.activations import ACT2FN
|
9 |
+
from transformers.modeling_outputs import (
|
10 |
+
BaseModelOutput,
|
11 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
12 |
+
Seq2SeqLMOutput,
|
13 |
+
Seq2SeqModelOutput,
|
14 |
+
)
|
15 |
+
from transformers.modeling_utils import PreTrainedModel
|
16 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
|
17 |
+
from transformers.utils import (
|
18 |
+
DUMMY_INPUTS,
|
19 |
+
DUMMY_MASK,
|
20 |
+
is_torch_fx_proxy,
|
21 |
+
logging,
|
22 |
+
)
|
23 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
24 |
+
from .configuration_t5mimo import T5MIMOConfig
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
class T5LayerNorm(nn.Module):
|
32 |
+
def __init__(self, hidden_size, eps=1e-6):
|
33 |
+
"""
|
34 |
+
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
|
35 |
+
"""
|
36 |
+
super().__init__()
|
37 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
38 |
+
self.variance_epsilon = eps
|
39 |
+
|
40 |
+
def forward(self, hidden_states):
|
41 |
+
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
42 |
+
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
|
43 |
+
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
44 |
+
# half-precision inputs is done in fp32
|
45 |
+
|
46 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
47 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
48 |
+
|
49 |
+
# convert into half-precision if necessary
|
50 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
51 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
52 |
+
|
53 |
+
return self.weight * hidden_states
|
54 |
+
|
55 |
+
|
56 |
+
ALL_LAYERNORM_LAYERS.append(T5LayerNorm)
|
57 |
+
|
58 |
+
|
59 |
+
class T5DenseActDense(nn.Module):
|
60 |
+
def __init__(self, config: T5MIMOConfig):
|
61 |
+
super().__init__()
|
62 |
+
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
|
63 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
64 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
65 |
+
self.act = ACT2FN[config.dense_act_fn]
|
66 |
+
|
67 |
+
def forward(self, hidden_states):
|
68 |
+
hidden_states = self.wi(hidden_states)
|
69 |
+
hidden_states = self.act(hidden_states)
|
70 |
+
hidden_states = self.dropout(hidden_states)
|
71 |
+
if (
|
72 |
+
isinstance(self.wo.weight, torch.Tensor)
|
73 |
+
and hidden_states.dtype != self.wo.weight.dtype
|
74 |
+
and self.wo.weight.dtype != torch.int8
|
75 |
+
):
|
76 |
+
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
77 |
+
hidden_states = self.wo(hidden_states)
|
78 |
+
return hidden_states
|
79 |
+
|
80 |
+
|
81 |
+
class T5DenseGatedActDense(nn.Module):
|
82 |
+
def __init__(self, config: T5MIMOConfig):
|
83 |
+
super().__init__()
|
84 |
+
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
85 |
+
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
86 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
87 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
88 |
+
self.act = ACT2FN[config.dense_act_fn]
|
89 |
+
|
90 |
+
def forward(self, hidden_states):
|
91 |
+
hidden_gelu = self.act(self.wi_0(hidden_states))
|
92 |
+
hidden_linear = self.wi_1(hidden_states)
|
93 |
+
hidden_states = hidden_gelu * hidden_linear
|
94 |
+
hidden_states = self.dropout(hidden_states)
|
95 |
+
|
96 |
+
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
|
97 |
+
# See https://github.com/huggingface/transformers/issues/20287
|
98 |
+
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
|
99 |
+
if (
|
100 |
+
isinstance(self.wo.weight, torch.Tensor)
|
101 |
+
and hidden_states.dtype != self.wo.weight.dtype
|
102 |
+
and self.wo.weight.dtype != torch.int8
|
103 |
+
):
|
104 |
+
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
105 |
+
|
106 |
+
hidden_states = self.wo(hidden_states)
|
107 |
+
return hidden_states
|
108 |
+
|
109 |
+
|
110 |
+
class T5LayerFF(nn.Module):
|
111 |
+
def __init__(self, config: T5MIMOConfig):
|
112 |
+
super().__init__()
|
113 |
+
if config.is_gated_act:
|
114 |
+
self.DenseReluDense = T5DenseGatedActDense(config)
|
115 |
+
else:
|
116 |
+
self.DenseReluDense = T5DenseActDense(config)
|
117 |
+
|
118 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
119 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
120 |
+
|
121 |
+
def forward(self, hidden_states):
|
122 |
+
forwarded_states = self.layer_norm(hidden_states)
|
123 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
124 |
+
hidden_states = hidden_states + self.dropout(forwarded_states)
|
125 |
+
return hidden_states
|
126 |
+
|
127 |
+
|
128 |
+
class T5Attention(nn.Module):
|
129 |
+
def __init__(self, config: T5MIMOConfig, has_relative_attention_bias=False):
|
130 |
+
super().__init__()
|
131 |
+
self.is_decoder = config.is_decoder
|
132 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
133 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
134 |
+
self.relative_attention_max_distance = config.relative_attention_max_distance
|
135 |
+
self.d_model = config.d_model
|
136 |
+
self.key_value_proj_dim = config.d_kv
|
137 |
+
self.n_heads = config.num_heads
|
138 |
+
self.dropout = config.dropout_rate
|
139 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
140 |
+
|
141 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
142 |
+
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
143 |
+
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
144 |
+
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
145 |
+
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
146 |
+
|
147 |
+
if self.has_relative_attention_bias:
|
148 |
+
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
|
149 |
+
self.pruned_heads = set()
|
150 |
+
self.gradient_checkpointing = False
|
151 |
+
|
152 |
+
def prune_heads(self, heads):
|
153 |
+
if len(heads) == 0:
|
154 |
+
return
|
155 |
+
heads, index = find_pruneable_heads_and_indices(
|
156 |
+
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
|
157 |
+
)
|
158 |
+
# Prune linear layers
|
159 |
+
self.q = prune_linear_layer(self.q, index)
|
160 |
+
self.k = prune_linear_layer(self.k, index)
|
161 |
+
self.v = prune_linear_layer(self.v, index)
|
162 |
+
self.o = prune_linear_layer(self.o, index, dim=1)
|
163 |
+
# Update hyper params
|
164 |
+
self.n_heads = self.n_heads - len(heads)
|
165 |
+
self.inner_dim = self.key_value_proj_dim * self.n_heads
|
166 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
167 |
+
|
168 |
+
@staticmethod
|
169 |
+
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
170 |
+
"""
|
171 |
+
Adapted from Mesh Tensorflow:
|
172 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
173 |
+
|
174 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
175 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
176 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
177 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
178 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
179 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
180 |
+
|
181 |
+
Args:
|
182 |
+
relative_position: an int32 Tensor
|
183 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
184 |
+
num_buckets: an integer
|
185 |
+
max_distance: an integer
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
189 |
+
"""
|
190 |
+
relative_buckets = 0
|
191 |
+
if bidirectional:
|
192 |
+
num_buckets //= 2
|
193 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
194 |
+
relative_position = torch.abs(relative_position)
|
195 |
+
else:
|
196 |
+
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
197 |
+
# now relative_position is in the range [0, inf)
|
198 |
+
|
199 |
+
# half of the buckets are for exact increments in positions
|
200 |
+
max_exact = num_buckets // 2
|
201 |
+
is_small = relative_position < max_exact
|
202 |
+
|
203 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
204 |
+
relative_position_if_large = max_exact + (
|
205 |
+
torch.log(relative_position.float() / max_exact)
|
206 |
+
/ math.log(max_distance / max_exact)
|
207 |
+
* (num_buckets - max_exact)
|
208 |
+
).to(torch.long)
|
209 |
+
relative_position_if_large = torch.min(
|
210 |
+
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
|
211 |
+
)
|
212 |
+
|
213 |
+
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
214 |
+
return relative_buckets
|
215 |
+
|
216 |
+
def compute_bias(self, query_length, key_length,multivar_dim=-1, device=None):
|
217 |
+
"""Compute binned relative position bias"""
|
218 |
+
if device is None:
|
219 |
+
device = self.relative_attention_bias.weight.device
|
220 |
+
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
221 |
+
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
222 |
+
relative_position = memory_position - context_position # shape (query_length, key_length)
|
223 |
+
relative_position_bucket = self._relative_position_bucket(
|
224 |
+
relative_position, # shape (query_length, key_length)
|
225 |
+
bidirectional=(not self.is_decoder),
|
226 |
+
num_buckets=self.relative_attention_num_buckets,
|
227 |
+
max_distance=self.relative_attention_max_distance,
|
228 |
+
)
|
229 |
+
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
230 |
+
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
231 |
+
if multivar_dim !=-1: # shape (1, multivar_dim, num_heads, query_length, key_length) (copy across)
|
232 |
+
values = values.expand(1, multivar_dim, -1, -1, -1)
|
233 |
+
|
234 |
+
return values
|
235 |
+
|
236 |
+
def forward(
|
237 |
+
self,
|
238 |
+
hidden_states,
|
239 |
+
mask=None,
|
240 |
+
key_value_states=None,
|
241 |
+
position_bias=None,
|
242 |
+
past_key_value=None,
|
243 |
+
layer_head_mask=None,
|
244 |
+
query_length=None,
|
245 |
+
use_cache=False,
|
246 |
+
output_attentions=False,
|
247 |
+
):
|
248 |
+
"""
|
249 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
250 |
+
"""
|
251 |
+
# Input is (batch_size, seq_length, dim)
|
252 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
253 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
254 |
+
if len(hidden_states.shape) == 3:
|
255 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
256 |
+
else:
|
257 |
+
batch_size, seq_length = hidden_states.shape[0],hidden_states.shape[2]
|
258 |
+
multivar_dim = hidden_states.shape[1]
|
259 |
+
real_seq_length = seq_length
|
260 |
+
|
261 |
+
if past_key_value is not None:
|
262 |
+
if len(past_key_value) != 2:
|
263 |
+
raise ValueError(
|
264 |
+
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
265 |
+
)
|
266 |
+
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
|
267 |
+
|
268 |
+
if len(hidden_states.shape) == 3:
|
269 |
+
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
|
270 |
+
else:
|
271 |
+
key_length = real_seq_length if key_value_states is None else key_value_states.shape[2]
|
272 |
+
|
273 |
+
|
274 |
+
def shape(states):
|
275 |
+
"""projection"""
|
276 |
+
# states: torch.Size([3, 16, 512]) -> query_states: torch.Size([3, 8, 16, 64])
|
277 |
+
# states: torch.Size([3, 6, 16, 512]) -> query_states: torch.Size([3, 6, 8 , 16, 64])
|
278 |
+
if len(states.shape) == 3:
|
279 |
+
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
280 |
+
else:
|
281 |
+
return states.view(batch_size, multivar_dim, -1, self.n_heads, self.key_value_proj_dim).transpose(2, 3)
|
282 |
+
|
283 |
+
|
284 |
+
def unshape(states):
|
285 |
+
"""reshape"""
|
286 |
+
if len(states.shape) == 4:
|
287 |
+
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
288 |
+
else:
|
289 |
+
return states.transpose(2, 3).contiguous().view(batch_size, multivar_dim, -1, self.inner_dim)
|
290 |
+
|
291 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
292 |
+
"""projects hidden states correctly to key/query states"""
|
293 |
+
if key_value_states is None:
|
294 |
+
# self-attn
|
295 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
296 |
+
hidden_states = shape(proj_layer(hidden_states))
|
297 |
+
elif past_key_value is None:
|
298 |
+
# cross-attn
|
299 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
300 |
+
hidden_states = shape(proj_layer(key_value_states))
|
301 |
+
|
302 |
+
if past_key_value is not None:
|
303 |
+
if key_value_states is None:
|
304 |
+
# self-attn
|
305 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
306 |
+
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
307 |
+
elif past_key_value.shape[2] != key_value_states.shape[1]:
|
308 |
+
# checking that the `sequence_length` of the `past_key_value` is the same as
|
309 |
+
# the provided `key_value_states` to support prefix tuning
|
310 |
+
# cross-attn
|
311 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
312 |
+
hidden_states = shape(proj_layer(key_value_states))
|
313 |
+
else:
|
314 |
+
# cross-attn
|
315 |
+
hidden_states = past_key_value
|
316 |
+
return hidden_states
|
317 |
+
|
318 |
+
# get query states
|
319 |
+
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
|
320 |
+
|
321 |
+
|
322 |
+
# get key/value states
|
323 |
+
key_states = project(
|
324 |
+
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
|
325 |
+
)
|
326 |
+
value_states = project(
|
327 |
+
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
|
328 |
+
)
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
+
# compute scores
|
333 |
+
if len(hidden_states.shape) == 3:
|
334 |
+
scores = torch.matmul(
|
335 |
+
query_states, key_states.transpose(3, 2)
|
336 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
337 |
+
else:
|
338 |
+
scores = torch.matmul(
|
339 |
+
query_states, key_states.transpose(4, 3)
|
340 |
+
)
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
if position_bias is None:
|
347 |
+
if not self.has_relative_attention_bias:
|
348 |
+
|
349 |
+
if len(hidden_states.shape) == 3:
|
350 |
+
position_bias = torch.zeros(
|
351 |
+
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
position_bias = torch.zeros(
|
355 |
+
(1,multivar_dim, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
356 |
+
)
|
357 |
+
if self.gradient_checkpointing and self.training:
|
358 |
+
position_bias.requires_grad = True
|
359 |
+
else:
|
360 |
+
|
361 |
+
if len(hidden_states.shape) == 3:
|
362 |
+
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
|
363 |
+
else:
|
364 |
+
position_bias = self.compute_bias(real_seq_length, key_length,multivar_dim=multivar_dim, device=scores.device)
|
365 |
+
|
366 |
+
# if key and values are already calculated
|
367 |
+
# we want only the last query position bias
|
368 |
+
if past_key_value is not None:
|
369 |
+
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
|
370 |
+
|
371 |
+
if mask is not None:
|
372 |
+
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
if self.pruned_heads:
|
377 |
+
mask = torch.ones(position_bias.shape[1])
|
378 |
+
mask[list(self.pruned_heads)] = 0
|
379 |
+
position_bias_masked = position_bias[:, mask.bool()]
|
380 |
+
else:
|
381 |
+
position_bias_masked = position_bias
|
382 |
+
|
383 |
+
|
384 |
+
scores += position_bias_masked
|
385 |
+
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
386 |
+
scores
|
387 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
388 |
+
attn_weights = nn.functional.dropout(
|
389 |
+
attn_weights, p=self.dropout, training=self.training
|
390 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
391 |
+
|
392 |
+
# Mask heads if we want to
|
393 |
+
if layer_head_mask is not None:
|
394 |
+
attn_weights = attn_weights * layer_head_mask
|
395 |
+
|
396 |
+
|
397 |
+
if len(hidden_states.shape) == 3:
|
398 |
+
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
|
399 |
+
else:
|
400 |
+
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, multivar_dim, seq_length, dim)
|
401 |
+
attn_output = self.o(attn_output)
|
402 |
+
|
403 |
+
|
404 |
+
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
|
405 |
+
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
406 |
+
|
407 |
+
|
408 |
+
if output_attentions:
|
409 |
+
outputs = outputs + (attn_weights,)
|
410 |
+
|
411 |
+
return outputs
|
412 |
+
|
413 |
+
|
414 |
+
class T5LayerSelfAttention(nn.Module):
|
415 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
416 |
+
super().__init__()
|
417 |
+
self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
|
418 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
419 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
420 |
+
|
421 |
+
def forward(
|
422 |
+
self,
|
423 |
+
hidden_states,
|
424 |
+
attention_mask=None,
|
425 |
+
position_bias=None,
|
426 |
+
layer_head_mask=None,
|
427 |
+
past_key_value=None,
|
428 |
+
use_cache=False,
|
429 |
+
output_attentions=False,
|
430 |
+
):
|
431 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
432 |
+
attention_output = self.SelfAttention(
|
433 |
+
normed_hidden_states,
|
434 |
+
mask=attention_mask,
|
435 |
+
position_bias=position_bias,
|
436 |
+
layer_head_mask=layer_head_mask,
|
437 |
+
past_key_value=past_key_value,
|
438 |
+
use_cache=use_cache,
|
439 |
+
output_attentions=output_attentions,
|
440 |
+
)
|
441 |
+
|
442 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
443 |
+
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
|
444 |
+
return outputs
|
445 |
+
|
446 |
+
|
447 |
+
class T5LayerCrossAttention(nn.Module):
|
448 |
+
def __init__(self, config):
|
449 |
+
super().__init__()
|
450 |
+
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
|
451 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
452 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
453 |
+
|
454 |
+
def forward(
|
455 |
+
self,
|
456 |
+
hidden_states,
|
457 |
+
key_value_states,
|
458 |
+
attention_mask=None,
|
459 |
+
position_bias=None,
|
460 |
+
layer_head_mask=None,
|
461 |
+
past_key_value=None,
|
462 |
+
use_cache=False,
|
463 |
+
query_length=None,
|
464 |
+
output_attentions=False,
|
465 |
+
):
|
466 |
+
|
467 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
468 |
+
attention_output = self.EncDecAttention(
|
469 |
+
normed_hidden_states,
|
470 |
+
mask=attention_mask,
|
471 |
+
key_value_states=key_value_states,
|
472 |
+
position_bias=position_bias,
|
473 |
+
layer_head_mask=layer_head_mask,
|
474 |
+
past_key_value=past_key_value,
|
475 |
+
use_cache=use_cache,
|
476 |
+
query_length=query_length,
|
477 |
+
output_attentions=output_attentions,
|
478 |
+
)
|
479 |
+
layer_output = hidden_states + self.dropout(attention_output[0])
|
480 |
+
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
|
481 |
+
return outputs
|
482 |
+
|
483 |
+
|
484 |
+
class T5Block(nn.Module):
|
485 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
486 |
+
super().__init__()
|
487 |
+
self.is_decoder = config.is_decoder
|
488 |
+
self.layer = nn.ModuleList()
|
489 |
+
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
|
490 |
+
if self.is_decoder:
|
491 |
+
self.layer.append(T5LayerCrossAttention(config))
|
492 |
+
|
493 |
+
self.layer.append(T5LayerFF(config))
|
494 |
+
|
495 |
+
def forward(
|
496 |
+
self,
|
497 |
+
hidden_states,
|
498 |
+
attention_mask=None,
|
499 |
+
position_bias=None,
|
500 |
+
encoder_hidden_states=None,
|
501 |
+
encoder_attention_mask=None,
|
502 |
+
encoder_decoder_position_bias=None,
|
503 |
+
layer_head_mask=None,
|
504 |
+
cross_attn_layer_head_mask=None,
|
505 |
+
past_key_value=None,
|
506 |
+
use_cache=False,
|
507 |
+
output_attentions=False,
|
508 |
+
return_dict=True,
|
509 |
+
):
|
510 |
+
if past_key_value is not None:
|
511 |
+
if not self.is_decoder:
|
512 |
+
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
|
513 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
514 |
+
|
515 |
+
if len(past_key_value) != expected_num_past_key_values:
|
516 |
+
raise ValueError(
|
517 |
+
f"There should be {expected_num_past_key_values} past states. "
|
518 |
+
f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
519 |
+
f"Got {len(past_key_value)} past key / value states"
|
520 |
+
)
|
521 |
+
|
522 |
+
self_attn_past_key_value = past_key_value[:2]
|
523 |
+
cross_attn_past_key_value = past_key_value[2:]
|
524 |
+
else:
|
525 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
526 |
+
|
527 |
+
self_attention_outputs = self.layer[0](
|
528 |
+
hidden_states,
|
529 |
+
attention_mask=attention_mask,
|
530 |
+
position_bias=position_bias,
|
531 |
+
layer_head_mask=layer_head_mask,
|
532 |
+
past_key_value=self_attn_past_key_value,
|
533 |
+
use_cache=use_cache,
|
534 |
+
output_attentions=output_attentions,
|
535 |
+
)
|
536 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
537 |
+
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
|
538 |
+
|
539 |
+
# clamp inf values to enable fp16 training
|
540 |
+
if hidden_states.dtype == torch.float16:
|
541 |
+
clamp_value = torch.where(
|
542 |
+
torch.isinf(hidden_states).any(),
|
543 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
544 |
+
torch.finfo(hidden_states.dtype).max,
|
545 |
+
)
|
546 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
547 |
+
|
548 |
+
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
549 |
+
if do_cross_attention:
|
550 |
+
# the actual query length is unknown for cross attention
|
551 |
+
# if using past key value states. Need to inject it here
|
552 |
+
if present_key_value_state is not None:
|
553 |
+
query_length = present_key_value_state[0].shape[2]
|
554 |
+
else:
|
555 |
+
query_length = None
|
556 |
+
|
557 |
+
cross_attention_outputs = self.layer[1](
|
558 |
+
hidden_states,
|
559 |
+
key_value_states=encoder_hidden_states,
|
560 |
+
attention_mask=encoder_attention_mask,
|
561 |
+
position_bias=encoder_decoder_position_bias,
|
562 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
563 |
+
past_key_value=cross_attn_past_key_value,
|
564 |
+
query_length=query_length,
|
565 |
+
use_cache=use_cache,
|
566 |
+
output_attentions=output_attentions,
|
567 |
+
)
|
568 |
+
hidden_states = cross_attention_outputs[0]
|
569 |
+
|
570 |
+
# clamp inf values to enable fp16 training
|
571 |
+
if hidden_states.dtype == torch.float16:
|
572 |
+
clamp_value = torch.where(
|
573 |
+
torch.isinf(hidden_states).any(),
|
574 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
575 |
+
torch.finfo(hidden_states.dtype).max,
|
576 |
+
)
|
577 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
578 |
+
|
579 |
+
# Combine self attn and cross attn key value states
|
580 |
+
if present_key_value_state is not None:
|
581 |
+
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
|
582 |
+
|
583 |
+
# Keep cross-attention outputs and relative position weights
|
584 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
585 |
+
|
586 |
+
# Apply Feed Forward layer
|
587 |
+
hidden_states = self.layer[-1](hidden_states)
|
588 |
+
|
589 |
+
# clamp inf values to enable fp16 training
|
590 |
+
if hidden_states.dtype == torch.float16:
|
591 |
+
clamp_value = torch.where(
|
592 |
+
torch.isinf(hidden_states).any(),
|
593 |
+
torch.finfo(hidden_states.dtype).max - 1000,
|
594 |
+
torch.finfo(hidden_states.dtype).max,
|
595 |
+
)
|
596 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
597 |
+
|
598 |
+
outputs = (hidden_states,)
|
599 |
+
|
600 |
+
if use_cache:
|
601 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
602 |
+
else:
|
603 |
+
outputs = outputs + attention_outputs
|
604 |
+
|
605 |
+
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
606 |
+
|
607 |
+
|
608 |
+
class T5ClassificationHead(nn.Module):
|
609 |
+
"""Head for sentence-level classification tasks."""
|
610 |
+
|
611 |
+
def __init__(self, config: T5MIMOConfig):
|
612 |
+
super().__init__()
|
613 |
+
self.dense = nn.Linear(config.d_model, config.d_model)
|
614 |
+
self.dropout = nn.Dropout(p=config.classifier_dropout)
|
615 |
+
self.out_proj = nn.Linear(config.d_model, config.num_labels)
|
616 |
+
|
617 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
618 |
+
hidden_states = self.dropout(hidden_states)
|
619 |
+
hidden_states = self.dense(hidden_states)
|
620 |
+
hidden_states = torch.tanh(hidden_states)
|
621 |
+
hidden_states = self.dropout(hidden_states)
|
622 |
+
hidden_states = self.out_proj(hidden_states)
|
623 |
+
return hidden_states
|
624 |
+
|
625 |
+
|
626 |
+
class T5PreTrainedModel(PreTrainedModel):
|
627 |
+
"""
|
628 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
629 |
+
models.
|
630 |
+
"""
|
631 |
+
|
632 |
+
config_class = T5MIMOConfig
|
633 |
+
base_model_prefix = "transformer"
|
634 |
+
is_parallelizable = True
|
635 |
+
supports_gradient_checkpointing = True
|
636 |
+
_no_split_modules = ["T5Block"]
|
637 |
+
_keep_in_fp32_modules = ["wo"]
|
638 |
+
|
639 |
+
@property
|
640 |
+
def dummy_inputs(self):
|
641 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
642 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
643 |
+
dummy_inputs = {
|
644 |
+
"decoder_input_ids": input_ids,
|
645 |
+
"input_ids": input_ids,
|
646 |
+
"decoder_attention_mask": input_mask,
|
647 |
+
}
|
648 |
+
return dummy_inputs
|
649 |
+
|
650 |
+
def _init_weights(self, module):
|
651 |
+
"""Initialize the weights"""
|
652 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
653 |
+
if isinstance(module, T5LayerNorm):
|
654 |
+
module.weight.data.fill_(factor * 1.0)
|
655 |
+
elif isinstance(
|
656 |
+
module,
|
657 |
+
(T5MIMOModel, T5MIMOForConditionalGeneration, T5MIMOEncoderModel),
|
658 |
+
):
|
659 |
+
# Mesh TensorFlow embeddings initialization
|
660 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
661 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
662 |
+
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
663 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
664 |
+
if hasattr(module, "qa_outputs"):
|
665 |
+
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
666 |
+
module.qa_outputs.bias.data.zero_()
|
667 |
+
elif isinstance(module, T5ClassificationHead):
|
668 |
+
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
669 |
+
if hasattr(module.dense, "bias") and module.dense.bias is not None:
|
670 |
+
module.dense.bias.data.zero_()
|
671 |
+
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
672 |
+
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
|
673 |
+
module.out_proj.bias.data.zero_()
|
674 |
+
elif isinstance(module, T5DenseActDense):
|
675 |
+
# Mesh TensorFlow FF initialization
|
676 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
677 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
678 |
+
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
679 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
680 |
+
module.wi.bias.data.zero_()
|
681 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
682 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
683 |
+
module.wo.bias.data.zero_()
|
684 |
+
elif isinstance(module, T5DenseGatedActDense):
|
685 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
686 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
687 |
+
module.wi_0.bias.data.zero_()
|
688 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
689 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
690 |
+
module.wi_1.bias.data.zero_()
|
691 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
692 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
693 |
+
module.wo.bias.data.zero_()
|
694 |
+
elif isinstance(module, T5Attention):
|
695 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
696 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
697 |
+
d_model = self.config.d_model
|
698 |
+
key_value_proj_dim = self.config.d_kv
|
699 |
+
n_heads = self.config.num_heads
|
700 |
+
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
701 |
+
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
702 |
+
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
703 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
704 |
+
if module.has_relative_attention_bias:
|
705 |
+
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
706 |
+
|
707 |
+
def _shift_right(self, input_ids):
|
708 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
709 |
+
pad_token_id = self.config.pad_token_id
|
710 |
+
|
711 |
+
if decoder_start_token_id is None:
|
712 |
+
raise ValueError(
|
713 |
+
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. "
|
714 |
+
"See T5 docs for more information."
|
715 |
+
)
|
716 |
+
|
717 |
+
# shift inputs to the right
|
718 |
+
if is_torch_fx_proxy(input_ids):
|
719 |
+
# Item assignment is not supported natively for proxies.
|
720 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
721 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
722 |
+
else:
|
723 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
724 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
725 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
726 |
+
|
727 |
+
if pad_token_id is None:
|
728 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
729 |
+
# replace possible -100 values in labels by `pad_token_id`
|
730 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
731 |
+
|
732 |
+
return shifted_input_ids
|
733 |
+
|
734 |
+
|
735 |
+
class T5Stack(T5PreTrainedModel):
|
736 |
+
def __init__(self, config, embed_tokens=None):
|
737 |
+
super().__init__(config)
|
738 |
+
|
739 |
+
self.embed_tokens = embed_tokens
|
740 |
+
self.is_decoder = config.is_decoder
|
741 |
+
|
742 |
+
self.block = nn.ModuleList(
|
743 |
+
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
744 |
+
)
|
745 |
+
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
746 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
747 |
+
|
748 |
+
# Initialize weights and apply final processing
|
749 |
+
self.post_init()
|
750 |
+
# Model parallel
|
751 |
+
self.model_parallel = False
|
752 |
+
self.device_map = None
|
753 |
+
self.gradient_checkpointing = False
|
754 |
+
|
755 |
+
def parallelize(self, device_map=None):
|
756 |
+
warnings.warn(
|
757 |
+
"`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
|
758 |
+
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
759 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
|
760 |
+
" 'block.1': 1, ...}",
|
761 |
+
FutureWarning,
|
762 |
+
)
|
763 |
+
# Check validity of device_map
|
764 |
+
self.device_map = (
|
765 |
+
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
|
766 |
+
)
|
767 |
+
assert_device_map(self.device_map, len(self.block))
|
768 |
+
self.model_parallel = True
|
769 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
770 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
771 |
+
# Load onto devices
|
772 |
+
for k, v in self.device_map.items():
|
773 |
+
for layer in v:
|
774 |
+
cuda_device = "cuda:" + str(k)
|
775 |
+
self.block[layer] = self.block[layer].to(cuda_device)
|
776 |
+
|
777 |
+
# Set embed_tokens to first layer
|
778 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
779 |
+
# Set final layer norm to last device
|
780 |
+
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
|
781 |
+
|
782 |
+
|
783 |
+
def deparallelize(self):
|
784 |
+
warnings.warn(
|
785 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
786 |
+
FutureWarning,
|
787 |
+
)
|
788 |
+
self.model_parallel = False
|
789 |
+
self.device_map = None
|
790 |
+
self.first_device = "cpu"
|
791 |
+
self.last_device = "cpu"
|
792 |
+
for i in range(len(self.block)):
|
793 |
+
self.block[i] = self.block[i].to("cpu")
|
794 |
+
self.embed_tokens = self.embed_tokens.to("cpu")
|
795 |
+
self.final_layer_norm = self.final_layer_norm.to("cpu")
|
796 |
+
torch.cuda.empty_cache()
|
797 |
+
|
798 |
+
def get_input_embeddings(self):
|
799 |
+
return self.embed_tokens
|
800 |
+
|
801 |
+
def set_input_embeddings(self, new_embeddings):
|
802 |
+
self.embed_tokens = new_embeddings
|
803 |
+
|
804 |
+
def forward(
|
805 |
+
self,
|
806 |
+
input_ids=None,
|
807 |
+
attention_mask=None,
|
808 |
+
encoder_hidden_states=None,
|
809 |
+
encoder_attention_mask=None,
|
810 |
+
inputs_embeds=None,
|
811 |
+
head_mask=None,
|
812 |
+
cross_attn_head_mask=None,
|
813 |
+
past_key_values=None,
|
814 |
+
use_cache=None,
|
815 |
+
output_attentions=None,
|
816 |
+
output_hidden_states=None,
|
817 |
+
return_dict=None,
|
818 |
+
):
|
819 |
+
# Model parallel
|
820 |
+
if self.model_parallel:
|
821 |
+
torch.cuda.set_device(self.first_device)
|
822 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
823 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
824 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
825 |
+
output_hidden_states = (
|
826 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
827 |
+
)
|
828 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
829 |
+
|
830 |
+
if input_ids is not None and inputs_embeds is not None:
|
831 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
832 |
+
raise ValueError(
|
833 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
834 |
+
)
|
835 |
+
elif input_ids is not None:
|
836 |
+
input_shape = input_ids.size()
|
837 |
+
# input_ids = input_ids.view(-1, input_shape[-1])
|
838 |
+
elif inputs_embeds is not None:
|
839 |
+
input_shape = inputs_embeds.size()[:-1]
|
840 |
+
else:
|
841 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
842 |
+
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
843 |
+
|
844 |
+
if inputs_embeds is None:
|
845 |
+
if self.embed_tokens is None:
|
846 |
+
raise ValueError("You have to initialize the model with valid token embeddings")
|
847 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
848 |
+
|
849 |
+
if len(input_shape) == 3:
|
850 |
+
batch_size, multivar_seqs ,seq_length = input_shape
|
851 |
+
else:
|
852 |
+
batch_size, seq_length = input_shape
|
853 |
+
|
854 |
+
# required mask seq length can be calculated via length of past
|
855 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
856 |
+
|
857 |
+
if use_cache is True:
|
858 |
+
if not self.is_decoder:
|
859 |
+
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
|
860 |
+
|
861 |
+
# initialize past_key_values with `None` if past does not exist
|
862 |
+
if past_key_values is None:
|
863 |
+
past_key_values = [None] * len(self.block)
|
864 |
+
|
865 |
+
if attention_mask is None:
|
866 |
+
if len(input_shape) == 2:
|
867 |
+
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
868 |
+
else:
|
869 |
+
attention_mask = torch.ones(batch_size, multivar_seqs, mask_seq_length, device=inputs_embeds.device)
|
870 |
+
|
871 |
+
|
872 |
+
|
873 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
874 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
875 |
+
if len(input_shape) == 2:
|
876 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
877 |
+
else:
|
878 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
879 |
+
# permute from [batch_size, 1, multivar_seqs, seq_length] to [batch_size, multivar_seqs, 1, seq_length]
|
880 |
+
extended_attention_mask = extended_attention_mask.permute(0, 2, 1, 3)
|
881 |
+
# Now make it [batch_size, multivar_seqs, 1, 1, seq_length]
|
882 |
+
extended_attention_mask = extended_attention_mask.unsqueeze(3)
|
883 |
+
|
884 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
885 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
886 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
887 |
+
|
888 |
+
if len(encoder_hidden_states.size()) == 3 :
|
889 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
890 |
+
else:
|
891 |
+
encoder_batch_size, multivar_dem, encoder_sequence_length, _ = encoder_hidden_states.size()
|
892 |
+
|
893 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
894 |
+
if encoder_attention_mask is None:
|
895 |
+
encoder_attention_mask = torch.ones(
|
896 |
+
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
|
897 |
+
)
|
898 |
+
if len(input_shape) == 2:
|
899 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
900 |
+
else:
|
901 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
902 |
+
multivar_dim = extended_attention_mask.shape[1]
|
903 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.unsqueeze(1)
|
904 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.permute(0, 3, 1, 2, 4)
|
905 |
+
|
906 |
+
else:
|
907 |
+
encoder_extended_attention_mask = None
|
908 |
+
|
909 |
+
|
910 |
+
|
911 |
+
if self.gradient_checkpointing and self.training:
|
912 |
+
if use_cache:
|
913 |
+
logger.warning_once(
|
914 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
915 |
+
)
|
916 |
+
use_cache = False
|
917 |
+
|
918 |
+
# Prepare head mask if needed
|
919 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
920 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
921 |
+
present_key_value_states = () if use_cache else None
|
922 |
+
all_hidden_states = () if output_hidden_states else None
|
923 |
+
all_attentions = () if output_attentions else None
|
924 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
925 |
+
position_bias = None
|
926 |
+
encoder_decoder_position_bias = None
|
927 |
+
|
928 |
+
hidden_states = self.dropout(inputs_embeds)
|
929 |
+
|
930 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
931 |
+
layer_head_mask = head_mask[i]
|
932 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
933 |
+
# Model parallel
|
934 |
+
if self.model_parallel:
|
935 |
+
torch.cuda.set_device(hidden_states.device)
|
936 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
937 |
+
if attention_mask is not None:
|
938 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
939 |
+
if position_bias is not None:
|
940 |
+
position_bias = position_bias.to(hidden_states.device)
|
941 |
+
if encoder_hidden_states is not None:
|
942 |
+
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
|
943 |
+
if encoder_extended_attention_mask is not None:
|
944 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
|
945 |
+
if encoder_decoder_position_bias is not None:
|
946 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
|
947 |
+
if layer_head_mask is not None:
|
948 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
949 |
+
if cross_attn_layer_head_mask is not None:
|
950 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
|
951 |
+
if output_hidden_states:
|
952 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
953 |
+
|
954 |
+
if self.gradient_checkpointing and self.training:
|
955 |
+
layer_outputs = self._gradient_checkpointing_func(
|
956 |
+
layer_module.forward,
|
957 |
+
hidden_states,
|
958 |
+
extended_attention_mask,
|
959 |
+
position_bias,
|
960 |
+
encoder_hidden_states,
|
961 |
+
encoder_extended_attention_mask,
|
962 |
+
encoder_decoder_position_bias,
|
963 |
+
layer_head_mask,
|
964 |
+
cross_attn_layer_head_mask,
|
965 |
+
None, # past_key_value is always None with gradient checkpointing
|
966 |
+
use_cache,
|
967 |
+
output_attentions,
|
968 |
+
)
|
969 |
+
else:
|
970 |
+
layer_outputs = layer_module(
|
971 |
+
hidden_states,
|
972 |
+
attention_mask=extended_attention_mask,
|
973 |
+
position_bias=position_bias,
|
974 |
+
encoder_hidden_states=encoder_hidden_states,
|
975 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
976 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
977 |
+
layer_head_mask=layer_head_mask,
|
978 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
979 |
+
past_key_value=past_key_value,
|
980 |
+
use_cache=use_cache,
|
981 |
+
output_attentions=output_attentions,
|
982 |
+
)
|
983 |
+
|
984 |
+
# layer_outputs is a tuple with:
|
985 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
986 |
+
if use_cache is False:
|
987 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
988 |
+
|
989 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
990 |
+
|
991 |
+
# We share the position biases between the layers - the first layer store them
|
992 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
993 |
+
# (cross-attention position bias), (cross-attention weights)
|
994 |
+
position_bias = layer_outputs[2]
|
995 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
996 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
997 |
+
# append next layer key value states
|
998 |
+
if use_cache:
|
999 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
1000 |
+
|
1001 |
+
if output_attentions:
|
1002 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
1003 |
+
if self.is_decoder:
|
1004 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
1005 |
+
|
1006 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
1007 |
+
if self.model_parallel:
|
1008 |
+
for k, v in self.device_map.items():
|
1009 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
1010 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
1011 |
+
|
1012 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1013 |
+
hidden_states = self.dropout(hidden_states)
|
1014 |
+
|
1015 |
+
# Add last layer
|
1016 |
+
if output_hidden_states:
|
1017 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1018 |
+
|
1019 |
+
if not return_dict:
|
1020 |
+
return tuple(
|
1021 |
+
v
|
1022 |
+
for v in [
|
1023 |
+
hidden_states,
|
1024 |
+
present_key_value_states,
|
1025 |
+
all_hidden_states,
|
1026 |
+
all_attentions,
|
1027 |
+
all_cross_attentions,
|
1028 |
+
]
|
1029 |
+
if v is not None
|
1030 |
+
)
|
1031 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1032 |
+
last_hidden_state=hidden_states,
|
1033 |
+
past_key_values=present_key_value_states,
|
1034 |
+
hidden_states=all_hidden_states,
|
1035 |
+
attentions=all_attentions,
|
1036 |
+
cross_attentions=all_cross_attentions,
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
|
1040 |
+
|
1041 |
+
class T5MIMOModel(T5PreTrainedModel):
|
1042 |
+
_keys_to_ignore_on_load_unexpected = [
|
1043 |
+
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
1044 |
+
]
|
1045 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
|
1046 |
+
|
1047 |
+
def __init__(self, config: T5MIMOConfig):
|
1048 |
+
super().__init__(config)
|
1049 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1050 |
+
|
1051 |
+
encoder_config = copy.deepcopy(config)
|
1052 |
+
encoder_config.is_decoder = False
|
1053 |
+
encoder_config.use_cache = False
|
1054 |
+
encoder_config.is_encoder_decoder = False
|
1055 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1056 |
+
|
1057 |
+
decoder_config = copy.deepcopy(config)
|
1058 |
+
decoder_config.is_decoder = True
|
1059 |
+
decoder_config.is_encoder_decoder = False
|
1060 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1061 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
1062 |
+
|
1063 |
+
# Initialize weights and apply final processing
|
1064 |
+
self.post_init()
|
1065 |
+
|
1066 |
+
# Model parallel
|
1067 |
+
self.model_parallel = False
|
1068 |
+
self.device_map = None
|
1069 |
+
|
1070 |
+
|
1071 |
+
def parallelize(self, device_map=None):
|
1072 |
+
warnings.warn(
|
1073 |
+
"`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
|
1074 |
+
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
1075 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':"
|
1076 |
+
" 0, 'encoder.block.1': 1, ...}",
|
1077 |
+
FutureWarning,
|
1078 |
+
)
|
1079 |
+
self.device_map = (
|
1080 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1081 |
+
if device_map is None
|
1082 |
+
else device_map
|
1083 |
+
)
|
1084 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1085 |
+
self.encoder.parallelize(self.device_map)
|
1086 |
+
self.decoder.parallelize(self.device_map)
|
1087 |
+
self.model_parallel = True
|
1088 |
+
|
1089 |
+
|
1090 |
+
def deparallelize(self):
|
1091 |
+
warnings.warn(
|
1092 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
1093 |
+
FutureWarning,
|
1094 |
+
)
|
1095 |
+
self.encoder.deparallelize()
|
1096 |
+
self.decoder.deparallelize()
|
1097 |
+
self.encoder = self.encoder.to("cpu")
|
1098 |
+
self.decoder = self.decoder.to("cpu")
|
1099 |
+
self.model_parallel = False
|
1100 |
+
self.device_map = None
|
1101 |
+
torch.cuda.empty_cache()
|
1102 |
+
|
1103 |
+
def get_input_embeddings(self):
|
1104 |
+
return self.shared
|
1105 |
+
|
1106 |
+
def set_input_embeddings(self, new_embeddings):
|
1107 |
+
self.shared = new_embeddings
|
1108 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1109 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1110 |
+
|
1111 |
+
def _tie_weights(self):
|
1112 |
+
if self.config.tie_word_embeddings:
|
1113 |
+
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
|
1114 |
+
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
|
1115 |
+
|
1116 |
+
def get_encoder(self):
|
1117 |
+
return self.encoder
|
1118 |
+
|
1119 |
+
def get_decoder(self):
|
1120 |
+
return self.decoder
|
1121 |
+
|
1122 |
+
def _prune_heads(self, heads_to_prune):
|
1123 |
+
"""
|
1124 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1125 |
+
class PreTrainedModel
|
1126 |
+
"""
|
1127 |
+
for layer, heads in heads_to_prune.items():
|
1128 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1129 |
+
|
1130 |
+
def forward(
|
1131 |
+
self,
|
1132 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1133 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1134 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1135 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1136 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1137 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
1138 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1139 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1140 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1141 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1142 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
1143 |
+
use_cache: Optional[bool] = None,
|
1144 |
+
output_attentions: Optional[bool] = None,
|
1145 |
+
output_hidden_states: Optional[bool] = None,
|
1146 |
+
return_dict: Optional[bool] = None,
|
1147 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
1148 |
+
r"""
|
1149 |
+
Returns:
|
1150 |
+
|
1151 |
+
Example:
|
1152 |
+
|
1153 |
+
```python
|
1154 |
+
>>> from transformers import AutoTokenizer, T5Model
|
1155 |
+
|
1156 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
|
1157 |
+
>>> model = T5Model.from_pretrained("google-t5/t5-small")
|
1158 |
+
|
1159 |
+
>>> input_ids = tokenizer(
|
1160 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1161 |
+
... ).input_ids # Batch size 1
|
1162 |
+
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
1163 |
+
|
1164 |
+
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model.
|
1165 |
+
>>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg.
|
1166 |
+
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
|
1167 |
+
|
1168 |
+
>>> # forward pass
|
1169 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
1170 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1171 |
+
```"""
|
1172 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1173 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1174 |
+
|
1175 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1176 |
+
if head_mask is not None and decoder_head_mask is None:
|
1177 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1178 |
+
decoder_head_mask = head_mask
|
1179 |
+
|
1180 |
+
# Encode if needed (training, first prediction pass)
|
1181 |
+
if encoder_outputs is None:
|
1182 |
+
encoder_outputs = self.encoder(
|
1183 |
+
input_ids=input_ids,
|
1184 |
+
attention_mask=attention_mask,
|
1185 |
+
inputs_embeds=inputs_embeds,
|
1186 |
+
head_mask=head_mask,
|
1187 |
+
output_attentions=output_attentions,
|
1188 |
+
output_hidden_states=output_hidden_states,
|
1189 |
+
return_dict=return_dict,
|
1190 |
+
)
|
1191 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1192 |
+
encoder_outputs = BaseModelOutput(
|
1193 |
+
last_hidden_state=encoder_outputs[0],
|
1194 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1195 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
hidden_states = encoder_outputs[0]
|
1199 |
+
|
1200 |
+
# Set device for model parallelism
|
1201 |
+
if self.model_parallel:
|
1202 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1203 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1204 |
+
if decoder_input_ids is not None:
|
1205 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1206 |
+
if attention_mask is not None:
|
1207 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1208 |
+
if decoder_attention_mask is not None:
|
1209 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
1210 |
+
|
1211 |
+
# Decode
|
1212 |
+
decoder_outputs = self.decoder(
|
1213 |
+
input_ids=decoder_input_ids,
|
1214 |
+
attention_mask=decoder_attention_mask,
|
1215 |
+
inputs_embeds=decoder_inputs_embeds,
|
1216 |
+
past_key_values=past_key_values,
|
1217 |
+
encoder_hidden_states=hidden_states,
|
1218 |
+
encoder_attention_mask=attention_mask,
|
1219 |
+
head_mask=decoder_head_mask,
|
1220 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1221 |
+
use_cache=use_cache,
|
1222 |
+
output_attentions=output_attentions,
|
1223 |
+
output_hidden_states=output_hidden_states,
|
1224 |
+
return_dict=return_dict,
|
1225 |
+
)
|
1226 |
+
|
1227 |
+
if not return_dict:
|
1228 |
+
return decoder_outputs + encoder_outputs
|
1229 |
+
|
1230 |
+
return Seq2SeqModelOutput(
|
1231 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1232 |
+
past_key_values=decoder_outputs.past_key_values,
|
1233 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1234 |
+
decoder_attentions=decoder_outputs.attentions,
|
1235 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1236 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1237 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1238 |
+
encoder_attentions=encoder_outputs.attentions,
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
|
1242 |
+
|
1243 |
+
class T5MIMOForConditionalGeneration(T5PreTrainedModel):
|
1244 |
+
_keys_to_ignore_on_load_unexpected = [
|
1245 |
+
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
1246 |
+
]
|
1247 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
|
1248 |
+
|
1249 |
+
def __init__(self, config: T5MIMOConfig):
|
1250 |
+
super().__init__(config)
|
1251 |
+
self.model_dim = config.d_model
|
1252 |
+
|
1253 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1254 |
+
|
1255 |
+
encoder_config = copy.deepcopy(config)
|
1256 |
+
encoder_config.is_decoder = False
|
1257 |
+
encoder_config.use_cache = False
|
1258 |
+
encoder_config.is_encoder_decoder = False
|
1259 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1260 |
+
|
1261 |
+
decoder_config = copy.deepcopy(config)
|
1262 |
+
decoder_config.is_decoder = True
|
1263 |
+
decoder_config.is_encoder_decoder = False
|
1264 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1265 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
1266 |
+
|
1267 |
+
|
1268 |
+
self.conv_block = MultivariateConvBlock(config.num_seqs, config.d_model, num_filters=config.num_filters)
|
1269 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
1270 |
+
|
1271 |
+
# Initialize weights and apply final processing
|
1272 |
+
self.post_init()
|
1273 |
+
|
1274 |
+
# Model parallel
|
1275 |
+
self.model_parallel = False
|
1276 |
+
self.device_map = None
|
1277 |
+
|
1278 |
+
|
1279 |
+
def parallelize(self, device_map=None):
|
1280 |
+
warnings.warn(
|
1281 |
+
"`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you"
|
1282 |
+
" should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also"
|
1283 |
+
" provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance"
|
1284 |
+
" {'encoder.block.0': 0, 'encoder.block.1': 1, ...}",
|
1285 |
+
FutureWarning,
|
1286 |
+
)
|
1287 |
+
self.device_map = (
|
1288 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1289 |
+
if device_map is None
|
1290 |
+
else device_map
|
1291 |
+
)
|
1292 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1293 |
+
self.encoder.parallelize(self.device_map)
|
1294 |
+
self.decoder.parallelize(self.device_map)
|
1295 |
+
self.lm_head = self.lm_head.to(self.decoder.first_device)
|
1296 |
+
self.model_parallel = True
|
1297 |
+
|
1298 |
+
|
1299 |
+
def deparallelize(self):
|
1300 |
+
warnings.warn(
|
1301 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
1302 |
+
FutureWarning,
|
1303 |
+
)
|
1304 |
+
self.encoder.deparallelize()
|
1305 |
+
self.decoder.deparallelize()
|
1306 |
+
self.encoder = self.encoder.to("cpu")
|
1307 |
+
self.decoder = self.decoder.to("cpu")
|
1308 |
+
self.lm_head = self.lm_head.to("cpu")
|
1309 |
+
self.model_parallel = False
|
1310 |
+
self.device_map = None
|
1311 |
+
torch.cuda.empty_cache()
|
1312 |
+
|
1313 |
+
def get_input_embeddings(self):
|
1314 |
+
return self.shared
|
1315 |
+
|
1316 |
+
def set_input_embeddings(self, new_embeddings):
|
1317 |
+
self.shared = new_embeddings
|
1318 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1319 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1320 |
+
|
1321 |
+
def _tie_weights(self):
|
1322 |
+
if self.config.tie_word_embeddings:
|
1323 |
+
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
|
1324 |
+
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
|
1325 |
+
|
1326 |
+
def set_output_embeddings(self, new_embeddings):
|
1327 |
+
self.lm_head = new_embeddings
|
1328 |
+
|
1329 |
+
def get_output_embeddings(self):
|
1330 |
+
return self.lm_head
|
1331 |
+
|
1332 |
+
def get_encoder(self):
|
1333 |
+
return self.encoder
|
1334 |
+
|
1335 |
+
def get_decoder(self):
|
1336 |
+
return self.decoder
|
1337 |
+
|
1338 |
+
def forward(
|
1339 |
+
self,
|
1340 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1341 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1342 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1343 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1344 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1345 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
1346 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1347 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1348 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1349 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1350 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1351 |
+
labels: Optional[torch.LongTensor] = None,
|
1352 |
+
use_cache: Optional[bool] = None,
|
1353 |
+
output_attentions: Optional[bool] = None,
|
1354 |
+
output_hidden_states: Optional[bool] = None,
|
1355 |
+
return_dict: Optional[bool] = None,
|
1356 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
1357 |
+
r"""
|
1358 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1359 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
1360 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
1361 |
+
labels in `[0, ..., config.vocab_size]`
|
1362 |
+
|
1363 |
+
Returns:
|
1364 |
+
|
1365 |
+
Examples:
|
1366 |
+
|
1367 |
+
```python
|
1368 |
+
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration
|
1369 |
+
|
1370 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
|
1371 |
+
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
|
1372 |
+
|
1373 |
+
>>> # training
|
1374 |
+
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
|
1375 |
+
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
|
1376 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
1377 |
+
>>> loss = outputs.loss
|
1378 |
+
>>> logits = outputs.logits
|
1379 |
+
|
1380 |
+
>>> # inference
|
1381 |
+
>>> input_ids = tokenizer(
|
1382 |
+
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
|
1383 |
+
... ).input_ids # Batch size 1
|
1384 |
+
>>> outputs = model.generate(input_ids)
|
1385 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
1386 |
+
>>> # studies have shown that owning a dog is good for you.
|
1387 |
+
```"""
|
1388 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1389 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1390 |
+
|
1391 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1392 |
+
if head_mask is not None and decoder_head_mask is None:
|
1393 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1394 |
+
decoder_head_mask = head_mask
|
1395 |
+
|
1396 |
+
# Encode if needed (training, first prediction pass)
|
1397 |
+
if encoder_outputs is None:
|
1398 |
+
# Convert encoder inputs in embeddings if needed
|
1399 |
+
encoder_outputs = self.encoder(
|
1400 |
+
input_ids=input_ids,
|
1401 |
+
attention_mask=attention_mask,
|
1402 |
+
inputs_embeds=inputs_embeds,
|
1403 |
+
head_mask=head_mask,
|
1404 |
+
output_attentions=output_attentions,
|
1405 |
+
output_hidden_states=output_hidden_states,
|
1406 |
+
return_dict=return_dict,
|
1407 |
+
)
|
1408 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1409 |
+
encoder_outputs = BaseModelOutput(
|
1410 |
+
last_hidden_state=encoder_outputs[0],
|
1411 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1412 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1413 |
+
)
|
1414 |
+
|
1415 |
+
hidden_states = encoder_outputs[0]
|
1416 |
+
|
1417 |
+
if self.model_parallel:
|
1418 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1419 |
+
|
1420 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
1421 |
+
# get decoder inputs from shifting lm labels to the right
|
1422 |
+
decoder_input_ids = self._shift_right(labels)
|
1423 |
+
|
1424 |
+
# Set device for model parallelism
|
1425 |
+
if self.model_parallel:
|
1426 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1427 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1428 |
+
if decoder_input_ids is not None:
|
1429 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1430 |
+
if attention_mask is not None:
|
1431 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1432 |
+
if decoder_attention_mask is not None:
|
1433 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
1434 |
+
|
1435 |
+
# Decode
|
1436 |
+
decoder_outputs = self.decoder(
|
1437 |
+
input_ids=decoder_input_ids,
|
1438 |
+
attention_mask=decoder_attention_mask,
|
1439 |
+
inputs_embeds=decoder_inputs_embeds,
|
1440 |
+
past_key_values=past_key_values,
|
1441 |
+
encoder_hidden_states=hidden_states,
|
1442 |
+
encoder_attention_mask=attention_mask,
|
1443 |
+
head_mask=decoder_head_mask,
|
1444 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1445 |
+
use_cache=use_cache,
|
1446 |
+
output_attentions=output_attentions,
|
1447 |
+
output_hidden_states=output_hidden_states,
|
1448 |
+
return_dict=return_dict,
|
1449 |
+
)
|
1450 |
+
|
1451 |
+
sequence_output = decoder_outputs[0]
|
1452 |
+
|
1453 |
+
# Set device for model parallelism
|
1454 |
+
if self.model_parallel:
|
1455 |
+
torch.cuda.set_device(self.encoder.first_device)
|
1456 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
1457 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
1458 |
+
|
1459 |
+
if self.config.tie_word_embeddings:
|
1460 |
+
# Rescale output before projecting on vocab
|
1461 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
1462 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
1463 |
+
|
1464 |
+
sequence_output = self.conv_block(sequence_output)
|
1465 |
+
lm_logits = self.lm_head(sequence_output)
|
1466 |
+
|
1467 |
+
loss = None
|
1468 |
+
if labels is not None:
|
1469 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1470 |
+
# move labels to correct device to enable PP
|
1471 |
+
labels = labels.to(lm_logits.device)
|
1472 |
+
if len(labels.shape) == 2:
|
1473 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
1474 |
+
else:
|
1475 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.reshape(-1))
|
1476 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
1477 |
+
|
1478 |
+
if not return_dict:
|
1479 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
1480 |
+
return ((loss,) + output) if loss is not None else output
|
1481 |
+
|
1482 |
+
return Seq2SeqLMOutput(
|
1483 |
+
loss=loss,
|
1484 |
+
logits=lm_logits,
|
1485 |
+
past_key_values=decoder_outputs.past_key_values,
|
1486 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1487 |
+
decoder_attentions=decoder_outputs.attentions,
|
1488 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1489 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1490 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1491 |
+
encoder_attentions=encoder_outputs.attentions,
|
1492 |
+
)
|
1493 |
+
|
1494 |
+
def prepare_inputs_for_generation(
|
1495 |
+
self,
|
1496 |
+
input_ids,
|
1497 |
+
past_key_values=None,
|
1498 |
+
attention_mask=None,
|
1499 |
+
head_mask=None,
|
1500 |
+
decoder_head_mask=None,
|
1501 |
+
decoder_attention_mask=None,
|
1502 |
+
cross_attn_head_mask=None,
|
1503 |
+
use_cache=None,
|
1504 |
+
encoder_outputs=None,
|
1505 |
+
**kwargs,
|
1506 |
+
):
|
1507 |
+
# cut decoder_input_ids if past_key_values is used
|
1508 |
+
if past_key_values is not None:
|
1509 |
+
past_length = past_key_values[0][0].shape[2]
|
1510 |
+
|
1511 |
+
# Some generation methods already pass only the last input ID
|
1512 |
+
if input_ids.shape[1] > past_length:
|
1513 |
+
remove_prefix_length = past_length
|
1514 |
+
else:
|
1515 |
+
# Default to old behavior: keep only final ID
|
1516 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1517 |
+
|
1518 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1519 |
+
|
1520 |
+
return {
|
1521 |
+
"decoder_input_ids": input_ids,
|
1522 |
+
"past_key_values": past_key_values,
|
1523 |
+
"encoder_outputs": encoder_outputs,
|
1524 |
+
"attention_mask": attention_mask,
|
1525 |
+
"head_mask": head_mask,
|
1526 |
+
"decoder_head_mask": decoder_head_mask,
|
1527 |
+
"decoder_attention_mask": decoder_attention_mask,
|
1528 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1529 |
+
"use_cache": use_cache,
|
1530 |
+
}
|
1531 |
+
|
1532 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1533 |
+
return self._shift_right(labels)
|
1534 |
+
|
1535 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1536 |
+
# if decoder past is not included in output
|
1537 |
+
# speedy decoding is disabled and no need to reorder
|
1538 |
+
if past_key_values is None:
|
1539 |
+
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
|
1540 |
+
return past_key_values
|
1541 |
+
|
1542 |
+
reordered_decoder_past = ()
|
1543 |
+
for layer_past_states in past_key_values:
|
1544 |
+
# get the correct batch idx from layer past batch dim
|
1545 |
+
# batch dim of `past` is at 2nd position
|
1546 |
+
reordered_layer_past_states = ()
|
1547 |
+
for layer_past_state in layer_past_states:
|
1548 |
+
# need to set correct `past` for each of the four key / value states
|
1549 |
+
reordered_layer_past_states = reordered_layer_past_states + (
|
1550 |
+
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
|
1551 |
+
)
|
1552 |
+
|
1553 |
+
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
|
1554 |
+
raise ValueError(
|
1555 |
+
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
|
1556 |
+
)
|
1557 |
+
if len(reordered_layer_past_states) != len(layer_past_states):
|
1558 |
+
raise ValueError(
|
1559 |
+
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
1563 |
+
return reordered_decoder_past
|
1564 |
+
|
1565 |
+
|
1566 |
+
|
1567 |
+
class T5MIMOEncoderModel(T5PreTrainedModel):
|
1568 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight"]
|
1569 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder"]
|
1570 |
+
|
1571 |
+
def __init__(self, config: T5MIMOConfig):
|
1572 |
+
super().__init__(config)
|
1573 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1574 |
+
|
1575 |
+
encoder_config = copy.deepcopy(config)
|
1576 |
+
encoder_config.use_cache = False
|
1577 |
+
encoder_config.is_encoder_decoder = False
|
1578 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1579 |
+
|
1580 |
+
# Initialize weights and apply final processing
|
1581 |
+
self.post_init()
|
1582 |
+
|
1583 |
+
# Model parallel
|
1584 |
+
self.model_parallel = False
|
1585 |
+
self.device_map = None
|
1586 |
+
|
1587 |
+
def parallelize(self, device_map=None):
|
1588 |
+
warnings.warn(
|
1589 |
+
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
1590 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
1591 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
|
1592 |
+
" 'block.1': 1, ...}",
|
1593 |
+
FutureWarning,
|
1594 |
+
)
|
1595 |
+
self.device_map = (
|
1596 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1597 |
+
if device_map is None
|
1598 |
+
else device_map
|
1599 |
+
)
|
1600 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1601 |
+
self.encoder.parallelize(self.device_map)
|
1602 |
+
self.model_parallel = True
|
1603 |
+
|
1604 |
+
def deparallelize(self):
|
1605 |
+
warnings.warn(
|
1606 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
1607 |
+
FutureWarning,
|
1608 |
+
)
|
1609 |
+
self.encoder.deparallelize()
|
1610 |
+
self.encoder = self.encoder.to("cpu")
|
1611 |
+
self.model_parallel = False
|
1612 |
+
self.device_map = None
|
1613 |
+
torch.cuda.empty_cache()
|
1614 |
+
|
1615 |
+
def get_input_embeddings(self):
|
1616 |
+
return self.shared
|
1617 |
+
|
1618 |
+
def set_input_embeddings(self, new_embeddings):
|
1619 |
+
self.shared = new_embeddings
|
1620 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1621 |
+
|
1622 |
+
def _tie_weights(self):
|
1623 |
+
if self.config.tie_word_embeddings:
|
1624 |
+
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
|
1625 |
+
|
1626 |
+
def get_encoder(self):
|
1627 |
+
return self.encoder
|
1628 |
+
|
1629 |
+
def _prune_heads(self, heads_to_prune):
|
1630 |
+
"""
|
1631 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1632 |
+
class PreTrainedModel
|
1633 |
+
"""
|
1634 |
+
for layer, heads in heads_to_prune.items():
|
1635 |
+
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
|
1636 |
+
|
1637 |
+
def forward(
|
1638 |
+
self,
|
1639 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1640 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1641 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1642 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1643 |
+
output_attentions: Optional[bool] = None,
|
1644 |
+
output_hidden_states: Optional[bool] = None,
|
1645 |
+
return_dict: Optional[bool] = None,
|
1646 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
1647 |
+
r"""
|
1648 |
+
Returns:
|
1649 |
+
|
1650 |
+
Example:
|
1651 |
+
|
1652 |
+
```python
|
1653 |
+
>>> from transformers import AutoTokenizer, T5EncoderModel
|
1654 |
+
|
1655 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
|
1656 |
+
>>> model = T5EncoderModel.from_pretrained("google-t5/t5-small")
|
1657 |
+
>>> input_ids = tokenizer(
|
1658 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1659 |
+
... ).input_ids # Batch size 1
|
1660 |
+
>>> outputs = model(input_ids=input_ids)
|
1661 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1662 |
+
```"""
|
1663 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1664 |
+
|
1665 |
+
encoder_outputs = self.encoder(
|
1666 |
+
input_ids=input_ids,
|
1667 |
+
attention_mask=attention_mask,
|
1668 |
+
inputs_embeds=inputs_embeds,
|
1669 |
+
head_mask=head_mask,
|
1670 |
+
output_attentions=output_attentions,
|
1671 |
+
output_hidden_states=output_hidden_states,
|
1672 |
+
return_dict=return_dict,
|
1673 |
+
)
|
1674 |
+
|
1675 |
+
return encoder_outputs
|
1676 |
+
|
1677 |
+
|
1678 |
+
|
1679 |
+
|
1680 |
+
class MultivariateConvBlock(nn.Module):
|
1681 |
+
def __init__(self, num_seqs, model_dim, kernel_size=3, num_filters=64, stride=1, padding=1):
|
1682 |
+
"""
|
1683 |
+
Multivariate convolutional block to capture cross-sequence interactions and temporal patterns.
|
1684 |
+
|
1685 |
+
Args:
|
1686 |
+
num_seqs (int): Number of sequences (multivariate time series).
|
1687 |
+
model_dim (int): Dimension of each feature vector (typically 256).
|
1688 |
+
kernel_size (int): Size of the convolutional kernel. Default is 3.
|
1689 |
+
num_filters (int): Number of convolutional filters (output channels). Default is 64.
|
1690 |
+
stride (int): Stride of the convolutional kernel. Default is 1.
|
1691 |
+
padding (int): Padding for the convolutional kernel. Default is 1 (to preserve sequence length).
|
1692 |
+
"""
|
1693 |
+
super(MultivariateConvBlock, self).__init__()
|
1694 |
+
|
1695 |
+
|
1696 |
+
# 2D Convolution across sequences and time
|
1697 |
+
self.conv1 = nn.Conv2d(
|
1698 |
+
in_channels=num_seqs,
|
1699 |
+
out_channels=num_filters,
|
1700 |
+
kernel_size=kernel_size, # Kernel spans across time and all features
|
1701 |
+
stride=1, # Stride across time, no stride across features
|
1702 |
+
padding=1 # Padding to preserve sequence length, no padding across features
|
1703 |
+
)
|
1704 |
+
|
1705 |
+
# Batch normalization for stabilization and faster convergence
|
1706 |
+
self.bn1 = nn.BatchNorm2d(num_filters)
|
1707 |
+
|
1708 |
+
# Second convolution layer to further model interactions and temporal patterns
|
1709 |
+
self.conv2 = nn.Conv2d(
|
1710 |
+
in_channels=num_filters,
|
1711 |
+
out_channels=num_filters,
|
1712 |
+
kernel_size=(kernel_size, 1), # Focus only on temporal patterns
|
1713 |
+
stride=(stride, 1),
|
1714 |
+
padding=(padding, 0)
|
1715 |
+
)
|
1716 |
+
|
1717 |
+
# Batch normalization after second convolution
|
1718 |
+
self.bn2 = nn.BatchNorm2d(num_filters)
|
1719 |
+
|
1720 |
+
# 1x1 Convolution to reduce the channel dimension back to num_seqs
|
1721 |
+
self.conv3 = nn.Conv2d(
|
1722 |
+
in_channels=num_filters,
|
1723 |
+
out_channels=num_seqs, # Back to the original number of sequences (channels)
|
1724 |
+
kernel_size=(1, 1)
|
1725 |
+
)
|
1726 |
+
|
1727 |
+
def forward(self, x):
|
1728 |
+
"""
|
1729 |
+
Forward pass of the multivariate convolutional block.
|
1730 |
+
|
1731 |
+
Args:
|
1732 |
+
x (torch.Tensor): Input tensor of shape [batch_size, num_seqs, seq_len, model_dim].
|
1733 |
+
|
1734 |
+
Returns:
|
1735 |
+
torch.Tensor: Output tensor of shape [batch_size, num_seqs, seq_len, model_dim].
|
1736 |
+
"""
|
1737 |
+
# Permute to [batch_size, num_seqs, seq_len, model_dim] -> [batch_size, num_seqs, model_dim, seq_len]
|
1738 |
+
x = x.permute(0, 1, 3, 2)
|
1739 |
+
|
1740 |
+
# Apply first convolution and activation
|
1741 |
+
x = nn.functional.relu(self.bn1(self.conv1(x)))
|
1742 |
+
# Apply second convolution and activation
|
1743 |
+
x = nn.functional.relu(self.bn2(self.conv2(x)))
|
1744 |
+
|
1745 |
+
# Reduce channel dimension back to num_seqs
|
1746 |
+
x = self.conv3(x)
|
1747 |
+
|
1748 |
+
# Permute back to original shape [batch_size, num_seqs, seq_len, model_dim]
|
1749 |
+
x = x.permute(0, 1, 3, 2)
|
1750 |
+
|
1751 |
+
return x
|