|
import copy |
|
import math |
|
import warnings |
|
from typing import Optional, Tuple, Union |
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
Seq2SeqLMOutput, |
|
Seq2SeqModelOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
DUMMY_INPUTS, |
|
DUMMY_MASK, |
|
is_torch_fx_proxy, |
|
logging, |
|
) |
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map |
|
from .configuration_t5mimo import T5MIMOConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
class T5LayerNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Construct a layernorm module in the T5 style. No bias and no subtraction of mean. |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
|
|
|
|
|
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(T5LayerNorm) |
|
|
|
|
|
class T5DenseActDense(nn.Module): |
|
def __init__(self, config: T5MIMOConfig): |
|
super().__init__() |
|
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) |
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
self.act = ACT2FN[config.dense_act_fn] |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.wi(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
if ( |
|
isinstance(self.wo.weight, torch.Tensor) |
|
and hidden_states.dtype != self.wo.weight.dtype |
|
and self.wo.weight.dtype != torch.int8 |
|
): |
|
hidden_states = hidden_states.to(self.wo.weight.dtype) |
|
hidden_states = self.wo(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5DenseGatedActDense(nn.Module): |
|
def __init__(self, config: T5MIMOConfig): |
|
super().__init__() |
|
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) |
|
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) |
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
self.act = ACT2FN[config.dense_act_fn] |
|
|
|
def forward(self, hidden_states): |
|
hidden_gelu = self.act(self.wi_0(hidden_states)) |
|
hidden_linear = self.wi_1(hidden_states) |
|
hidden_states = hidden_gelu * hidden_linear |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
|
|
|
|
if ( |
|
isinstance(self.wo.weight, torch.Tensor) |
|
and hidden_states.dtype != self.wo.weight.dtype |
|
and self.wo.weight.dtype != torch.int8 |
|
): |
|
hidden_states = hidden_states.to(self.wo.weight.dtype) |
|
|
|
hidden_states = self.wo(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5LayerFF(nn.Module): |
|
def __init__(self, config: T5MIMOConfig): |
|
super().__init__() |
|
if config.is_gated_act: |
|
self.DenseReluDense = T5DenseGatedActDense(config) |
|
else: |
|
self.DenseReluDense = T5DenseActDense(config) |
|
|
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward(self, hidden_states): |
|
forwarded_states = self.layer_norm(hidden_states) |
|
forwarded_states = self.DenseReluDense(forwarded_states) |
|
hidden_states = hidden_states + self.dropout(forwarded_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class MultivariateConvBlock(nn.Module): |
|
def __init__(self, config: T5MIMOConfig, kernel_size=3, stride=1, padding=1): |
|
super().__init__() |
|
|
|
self.conv1 = nn.Conv2d( |
|
in_channels=config.num_seqs, |
|
out_channels=config.num_filters, |
|
kernel_size=kernel_size, |
|
stride=1, |
|
padding=1 |
|
) |
|
|
|
|
|
self.bn1 = nn.BatchNorm2d(config.num_filters) |
|
|
|
|
|
self.conv2 = nn.Conv2d( |
|
in_channels=config.num_filters, |
|
out_channels=config.num_filters, |
|
kernel_size=(kernel_size, 1), |
|
stride=(stride, 1), |
|
padding=(padding, 0) |
|
) |
|
|
|
|
|
self.bn2 = nn.BatchNorm2d(config.num_filters) |
|
|
|
|
|
self.conv3 = nn.Conv2d( |
|
in_channels=config.num_filters, |
|
out_channels=config.num_seqs, |
|
kernel_size=(1, 1) |
|
) |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass of the multivariate convolutional block. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor of shape [batch_size, num_seqs, seq_len, model_dim]. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor of shape [batch_size, num_seqs, seq_len, model_dim]. |
|
""" |
|
|
|
x = x.permute(0, 1, 3, 2) |
|
|
|
|
|
x = nn.functional.relu(self.bn1(self.conv1(x))) |
|
|
|
x = nn.functional.relu(self.bn2(self.conv2(x))) |
|
|
|
|
|
x = self.conv3(x) |
|
|
|
|
|
x = x.permute(0, 1, 3, 2) |
|
|
|
return x |
|
|
|
|
|
|
|
class T5Attention(nn.Module): |
|
def __init__(self, config: T5MIMOConfig, has_relative_attention_bias=False): |
|
super().__init__() |
|
self.is_decoder = config.is_decoder |
|
self.has_relative_attention_bias = has_relative_attention_bias |
|
self.relative_attention_num_buckets = config.relative_attention_num_buckets |
|
self.relative_attention_max_distance = config.relative_attention_max_distance |
|
self.d_model = config.d_model |
|
self.key_value_proj_dim = config.d_kv |
|
self.n_heads = config.num_heads |
|
self.inner_dim = self.n_heads * self.key_value_proj_dim |
|
self.dropout = config.dropout_rate |
|
self.config = config |
|
|
|
|
|
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) |
|
|
|
if self.has_relative_attention_bias: |
|
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) |
|
self.pruned_heads = set() |
|
self.gradient_checkpointing = False |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads |
|
) |
|
|
|
self.q = prune_linear_layer(self.q, index) |
|
self.k = prune_linear_layer(self.k, index) |
|
self.v = prune_linear_layer(self.v, index) |
|
self.o = prune_linear_layer(self.o, index, dim=1) |
|
|
|
self.n_heads = self.n_heads - len(heads) |
|
self.inner_dim = self.key_value_proj_dim * self.n_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): |
|
""" |
|
Adapted from Mesh Tensorflow: |
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 |
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as |
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to |
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for |
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative |
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. |
|
This should allow for more graceful generalization to longer sequences than the model has been trained on |
|
|
|
Args: |
|
relative_position: an int32 Tensor |
|
bidirectional: a boolean - whether the attention is bidirectional |
|
num_buckets: an integer |
|
max_distance: an integer |
|
|
|
Returns: |
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) |
|
""" |
|
relative_buckets = 0 |
|
if bidirectional: |
|
num_buckets //= 2 |
|
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets |
|
relative_position = torch.abs(relative_position) |
|
else: |
|
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) |
|
|
|
|
|
|
|
max_exact = num_buckets // 2 |
|
is_small = relative_position < max_exact |
|
|
|
|
|
relative_position_if_large = max_exact + ( |
|
torch.log(relative_position.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.long) |
|
relative_position_if_large = torch.min( |
|
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) |
|
) |
|
|
|
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) |
|
return relative_buckets |
|
|
|
def compute_bias(self, query_length, key_length, device=None, multivar_dim=None): |
|
"""Compute binned relative position bias""" |
|
if device is None: |
|
device = self.relative_attention_bias.weight.device |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
relative_position_bucket = self._relative_position_bucket( |
|
relative_position, |
|
bidirectional=(not self.is_decoder), |
|
num_buckets=self.relative_attention_num_buckets, |
|
max_distance=self.relative_attention_max_distance, |
|
) |
|
values = self.relative_attention_bias(relative_position_bucket) |
|
values = values.permute([2, 0, 1]).unsqueeze(0) |
|
if self.config.is_mimo: |
|
if multivar_dim == None: |
|
raise ValueError(f"multivar_dim can not be None when config.is_mimo=True") |
|
values = values.unsqueeze(0) |
|
values = values.repeat(1, multivar_dim, 1, 1, 1) |
|
return values |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
mask=None, |
|
key_value_states=None, |
|
position_bias=None, |
|
past_key_value=None, |
|
layer_head_mask=None, |
|
query_length=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
|
|
|
|
|
|
|
|
if self.config.is_mimo: |
|
batch_size, multivar_dim, seq_length = hidden_states.shape[:3] |
|
else: |
|
batch_size, seq_length = hidden_states.shape[:2] |
|
multivar_dim=None |
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 2: |
|
raise ValueError(f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states") |
|
if self.config.is_mimo: |
|
real_seq_length += past_key_value[0].shape[3] if query_length is None else query_length |
|
else: |
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length |
|
|
|
if self.config.is_mimo: |
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[2] |
|
else: |
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] |
|
|
|
|
|
|
|
def shape(states): |
|
"""projection""" |
|
if self.config.is_mimo: |
|
return states.view(batch_size, multivar_dim, -1, self.n_heads, self.key_value_proj_dim).transpose(2, 3) |
|
else: |
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
|
|
def unshape(states): |
|
"""reshape""" |
|
if self.config.is_mimo: |
|
return states.transpose(2, 3).contiguous().view(batch_size, multivar_dim, -1, self.inner_dim) |
|
else: |
|
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
|
|
|
|
if self.config.is_mimo: |
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=3) |
|
else: |
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) |
|
elif past_key_value.shape[2] != key_value_states.shape[1]: |
|
|
|
|
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
else: |
|
|
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
|
|
query_states = shape(self.q(hidden_states)) |
|
|
|
|
|
|
|
key_states = project( |
|
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None |
|
) |
|
value_states = project( |
|
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None |
|
) |
|
|
|
|
|
|
|
|
|
if self.config.is_mimo: |
|
scores = torch.matmul(query_states, key_states.transpose(4, 3)) |
|
else: |
|
scores = torch.matmul(query_states, key_states.transpose(3, 2)) |
|
|
|
|
|
|
|
|
|
if position_bias is None: |
|
if not self.has_relative_attention_bias: |
|
if self.config.is_mimo: |
|
position_bias = torch.zeros((1,multivar_dim, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype) |
|
else: |
|
position_bias = torch.zeros((1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype) |
|
if self.gradient_checkpointing and self.training: |
|
position_bias.requires_grad = True |
|
else: |
|
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, multivar_dim=multivar_dim) |
|
|
|
|
|
|
|
|
|
if past_key_value is not None: |
|
if self.config.is_mimo: |
|
position_bias = position_bias[:, :, :, -hidden_states.size(2) :, :] |
|
else: |
|
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] |
|
|
|
if mask is not None: |
|
position_bias = position_bias + mask |
|
|
|
|
|
|
|
|
|
if self.pruned_heads: |
|
mask = torch.ones(position_bias.shape[1]) |
|
mask[list(self.pruned_heads)] = 0 |
|
position_bias_masked = position_bias[:, mask.bool()] |
|
else: |
|
position_bias_masked = position_bias |
|
|
|
|
|
scores += position_bias_masked |
|
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
|
|
if layer_head_mask is not None: |
|
attn_weights = attn_weights * layer_head_mask |
|
|
|
|
|
attn_output = unshape(torch.matmul(attn_weights, value_states)) |
|
attn_output = self.o(attn_output) |
|
|
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None |
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) |
|
|
|
|
|
if output_attentions: |
|
outputs = outputs + (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class T5LayerSelfAttention(nn.Module): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super().__init__() |
|
self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias) |
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.SelfAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = hidden_states + self.dropout(attention_output[0]) |
|
outputs = (hidden_states,) + attention_output[1:] |
|
return outputs |
|
|
|
|
|
class T5LayerCrossAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False) |
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
key_value_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
query_length=None, |
|
output_attentions=False, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.EncDecAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
key_value_states=key_value_states, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
query_length=query_length, |
|
output_attentions=output_attentions, |
|
) |
|
layer_output = hidden_states + self.dropout(attention_output[0]) |
|
outputs = (layer_output,) + attention_output[1:] |
|
return outputs |
|
|
|
|
|
class T5Block(nn.Module): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super().__init__() |
|
self.is_decoder = config.is_decoder |
|
self.layer = nn.ModuleList() |
|
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) |
|
if self.is_decoder: |
|
self.layer.append(T5LayerCrossAttention(config)) |
|
|
|
self.layer.append(T5LayerFF(config)) |
|
|
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
encoder_decoder_position_bias=None, |
|
layer_head_mask=None, |
|
cross_attn_layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
return_dict=True, |
|
): |
|
if past_key_value is not None: |
|
if not self.is_decoder: |
|
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") |
|
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 |
|
|
|
if len(past_key_value) != expected_num_past_key_values: |
|
raise ValueError( |
|
f"There should be {expected_num_past_key_values} past states. " |
|
f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" |
|
f"Got {len(past_key_value)} past key / value states" |
|
) |
|
|
|
self_attn_past_key_value = past_key_value[:2] |
|
cross_attn_past_key_value = past_key_value[2:] |
|
else: |
|
self_attn_past_key_value, cross_attn_past_key_value = None, None |
|
|
|
self_attention_outputs = self.layer[0]( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=self_attn_past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states, present_key_value_state = self_attention_outputs[:2] |
|
attention_outputs = self_attention_outputs[2:] |
|
|
|
|
|
if hidden_states.dtype == torch.float16: |
|
clamp_value = torch.where( |
|
torch.isinf(hidden_states).any(), |
|
torch.finfo(hidden_states.dtype).max - 1000, |
|
torch.finfo(hidden_states.dtype).max, |
|
) |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
do_cross_attention = self.is_decoder and encoder_hidden_states is not None |
|
if do_cross_attention: |
|
|
|
|
|
if present_key_value_state is not None: |
|
if self.config.is_mimo: |
|
query_length = present_key_value_state[0].shape[3] |
|
else: |
|
query_length = present_key_value_state[0].shape[2] |
|
else: |
|
query_length = None |
|
|
|
cross_attention_outputs = self.layer[1]( |
|
hidden_states, |
|
key_value_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
query_length=query_length, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = cross_attention_outputs[0] |
|
|
|
|
|
if hidden_states.dtype == torch.float16: |
|
clamp_value = torch.where( |
|
torch.isinf(hidden_states).any(), |
|
torch.finfo(hidden_states.dtype).max - 1000, |
|
torch.finfo(hidden_states.dtype).max, |
|
) |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
|
|
if present_key_value_state is not None: |
|
present_key_value_state = present_key_value_state + cross_attention_outputs[1] |
|
|
|
|
|
attention_outputs = attention_outputs + cross_attention_outputs[2:] |
|
|
|
|
|
hidden_states = self.layer[-1](hidden_states) |
|
|
|
|
|
if hidden_states.dtype == torch.float16: |
|
clamp_value = torch.where( |
|
torch.isinf(hidden_states).any(), |
|
torch.finfo(hidden_states.dtype).max - 1000, |
|
torch.finfo(hidden_states.dtype).max, |
|
) |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if use_cache: |
|
outputs = outputs + (present_key_value_state,) + attention_outputs |
|
else: |
|
outputs = outputs + attention_outputs |
|
|
|
return outputs |
|
|
|
|
|
class T5ClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config: T5MIMOConfig): |
|
super().__init__() |
|
self.dense = nn.Linear(config.d_model, config.d_model) |
|
self.dropout = nn.Dropout(p=config.classifier_dropout) |
|
self.out_proj = nn.Linear(config.d_model, config.num_labels) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = torch.tanh(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.out_proj(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = T5MIMOConfig |
|
base_model_prefix = "transformer" |
|
is_parallelizable = True |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["T5Block"] |
|
_keep_in_fp32_modules = ["wo"] |
|
|
|
@property |
|
def dummy_inputs(self): |
|
input_ids = torch.tensor(DUMMY_INPUTS) |
|
input_mask = torch.tensor(DUMMY_MASK) |
|
dummy_inputs = { |
|
"decoder_input_ids": input_ids, |
|
"input_ids": input_ids, |
|
"decoder_attention_mask": input_mask, |
|
} |
|
return dummy_inputs |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
factor = self.config.initializer_factor |
|
if isinstance(module, T5LayerNorm): |
|
module.weight.data.fill_(factor * 1.0) |
|
elif isinstance( |
|
module, |
|
(T5MIMOModel, T5MIMOForConditionalGeneration, T5MIMOEncoderModel), |
|
): |
|
|
|
|
|
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) |
|
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: |
|
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) |
|
if hasattr(module, "qa_outputs"): |
|
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
module.qa_outputs.bias.data.zero_() |
|
elif isinstance(module, T5ClassificationHead): |
|
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.dense, "bias") and module.dense.bias is not None: |
|
module.dense.bias.data.zero_() |
|
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: |
|
module.out_proj.bias.data.zero_() |
|
elif isinstance(module, T5DenseActDense): |
|
|
|
|
|
|
|
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi, "bias") and module.wi.bias is not None: |
|
module.wi.bias.data.zero_() |
|
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) |
|
if hasattr(module.wo, "bias") and module.wo.bias is not None: |
|
module.wo.bias.data.zero_() |
|
elif isinstance(module, T5DenseGatedActDense): |
|
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: |
|
module.wi_0.bias.data.zero_() |
|
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: |
|
module.wi_1.bias.data.zero_() |
|
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) |
|
if hasattr(module.wo, "bias") and module.wo.bias is not None: |
|
module.wo.bias.data.zero_() |
|
elif isinstance(module, T5Attention): |
|
|
|
|
|
d_model = self.config.d_model |
|
key_value_proj_dim = self.config.d_kv |
|
n_heads = self.config.num_heads |
|
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) |
|
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) |
|
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) |
|
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) |
|
if module.has_relative_attention_bias: |
|
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) |
|
|
|
def _shift_right(self, input_ids): |
|
decoder_start_token_id = self.config.decoder_start_token_id |
|
pad_token_id = self.config.pad_token_id |
|
|
|
if decoder_start_token_id is None: |
|
raise ValueError( |
|
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " |
|
"See T5 docs for more information." |
|
) |
|
|
|
|
|
if is_torch_fx_proxy(input_ids): |
|
|
|
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) |
|
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) |
|
else: |
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() |
|
shifted_input_ids[..., 0] = decoder_start_token_id |
|
|
|
if pad_token_id is None: |
|
raise ValueError("self.model.config.pad_token_id has to be defined.") |
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) |
|
|
|
return shifted_input_ids |
|
|
|
|
|
class T5Stack(T5PreTrainedModel): |
|
def __init__(self, config, embed_tokens=None): |
|
super().__init__(config) |
|
|
|
self.embed_tokens = embed_tokens |
|
self.is_decoder = config.is_decoder |
|
|
|
self.block = nn.ModuleList( |
|
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] |
|
) |
|
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
|
|
self.post_init() |
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
|
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" |
|
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," |
|
" 'block.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
|
|
self.device_map = ( |
|
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.block)) |
|
self.model_parallel = True |
|
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) |
|
self.last_device = "cuda:" + str(max(self.device_map.keys())) |
|
|
|
for k, v in self.device_map.items(): |
|
for layer in v: |
|
cuda_device = "cuda:" + str(k) |
|
self.block[layer] = self.block[layer].to(cuda_device) |
|
|
|
|
|
self.embed_tokens = self.embed_tokens.to(self.first_device) |
|
|
|
self.final_layer_norm = self.final_layer_norm.to(self.last_device) |
|
|
|
|
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.model_parallel = False |
|
self.device_map = None |
|
self.first_device = "cpu" |
|
self.last_device = "cpu" |
|
for i in range(len(self.block)): |
|
self.block[i] = self.block[i].to("cpu") |
|
self.embed_tokens = self.embed_tokens.to("cpu") |
|
self.final_layer_norm = self.final_layer_norm.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embed_tokens = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
inputs_embeds=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.first_device) |
|
self.embed_tokens = self.embed_tokens.to(self.first_device) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = (output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError(f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
if self.embed_tokens is None: |
|
raise ValueError("You have to initialize the model with valid token embeddings") |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if self.config.is_mimo: |
|
batch_size, multivar_seqs ,seq_length = input_shape |
|
else: |
|
batch_size, seq_length = input_shape |
|
|
|
|
|
if self.config.is_mimo: |
|
mask_seq_length = past_key_values[0][0].shape[3] + seq_length if past_key_values is not None else seq_length |
|
else: |
|
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length |
|
|
|
if use_cache is True: |
|
if not self.is_decoder: |
|
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") |
|
|
|
|
|
if past_key_values is None: |
|
past_key_values = [None] * len(self.block) |
|
if attention_mask is None: |
|
if self.config.is_mimo: |
|
attention_mask = torch.ones(batch_size,multivar_seqs, mask_seq_length, device=inputs_embeds.device) |
|
else: |
|
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.config.is_mimo: |
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask[:,0,:], (input_shape[0], input_shape[2])) |
|
extended_attention_mask = extended_attention_mask.unsqueeze(1) |
|
extended_attention_mask = extended_attention_mask.repeat(1, input_shape[1], 1, 1, 1) |
|
else: |
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
|
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if self.config.is_mimo: |
|
encoder_batch_size, multivar_dem, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
else: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
|
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long) |
|
|
|
if self.config.is_mimo: |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
encoder_extended_attention_mask = encoder_extended_attention_mask.unsqueeze(0) |
|
encoder_extended_attention_mask = encoder_extended_attention_mask.repeat(1, input_shape[1], 1, 1, 1) |
|
else: |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
if self.config.is_mimo: |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
encoder_extended_attention_mask = encoder_extended_attention_mask.permute(0, 2, 1, 3) |
|
encoder_extended_attention_mask = encoder_extended_attention_mask.unsqueeze(3) |
|
else: |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
|
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") |
|
use_cache = False |
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers) |
|
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) |
|
present_key_value_states = () if use_cache else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None |
|
position_bias = None |
|
encoder_decoder_position_bias = None |
|
|
|
hidden_states = self.dropout(inputs_embeds) |
|
|
|
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): |
|
layer_head_mask = head_mask[i] |
|
cross_attn_layer_head_mask = cross_attn_head_mask[i] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if position_bias is not None: |
|
position_bias = position_bias.to(hidden_states.device) |
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) |
|
if encoder_extended_attention_mask is not None: |
|
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) |
|
if encoder_decoder_position_bias is not None: |
|
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) |
|
if layer_head_mask is not None: |
|
layer_head_mask = layer_head_mask.to(hidden_states.device) |
|
if cross_attn_layer_head_mask is not None: |
|
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.forward, |
|
hidden_states, |
|
extended_attention_mask, |
|
position_bias, |
|
encoder_hidden_states, |
|
encoder_extended_attention_mask, |
|
encoder_decoder_position_bias, |
|
layer_head_mask, |
|
cross_attn_layer_head_mask, |
|
None, |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
position_bias=position_bias, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=layer_head_mask, |
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
|
|
|
|
if use_cache is False: |
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] |
|
|
|
hidden_states, present_key_value_state = layer_outputs[:2] |
|
|
|
|
|
|
|
|
|
position_bias = layer_outputs[2] |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] |
|
|
|
if use_cache: |
|
present_key_value_states = present_key_value_states + (present_key_value_state,) |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[3],) |
|
if self.is_decoder: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) |
|
|
|
|
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
present_key_value_states, |
|
all_hidden_states, |
|
all_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_value_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class T5MIMOModel(T5PreTrainedModel): |
|
config_class = T5MIMOConfig |
|
|
|
_keys_to_ignore_on_load_unexpected = [ |
|
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", |
|
] |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: T5MIMOConfig): |
|
super().__init__(config) |
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = T5Stack(decoder_config, self.shared) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" |
|
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" |
|
" 0, 'encoder.block.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.decoder.parallelize(self.device_map) |
|
self.model_parallel = True |
|
|
|
|
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.encoder.deparallelize() |
|
self.decoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.decoder = self.decoder.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
decoder_inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, T5Model |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") |
|
>>> model = T5Model.from_pretrained("google-t5/t5-small") |
|
|
|
>>> input_ids = tokenizer( |
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 |
|
|
|
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. |
|
>>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. |
|
>>> decoder_input_ids = model._shift_right(decoder_input_ids) |
|
|
|
>>> # forward pass |
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
```""" |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
decoder_head_mask = head_mask |
|
|
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
hidden_states = hidden_states.to(self.decoder.first_device) |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(self.decoder.first_device) |
|
if decoder_attention_mask is not None: |
|
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class T5MIMOForConditionalGeneration(T5PreTrainedModel): |
|
config_class = T5MIMOConfig |
|
|
|
_keys_to_ignore_on_load_unexpected = [ |
|
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", |
|
] |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] |
|
|
|
def __init__(self, config: T5MIMOConfig): |
|
super().__init__(config) |
|
self.model_dim = config.d_model |
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = T5Stack(decoder_config, self.shared) |
|
|
|
|
|
|
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" |
|
" should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" |
|
" provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" |
|
" {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.decoder.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.decoder.first_device) |
|
self.model_parallel = True |
|
|
|
|
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.encoder.deparallelize() |
|
self.decoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.decoder = self.decoder.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
use_conv: Optional[bool] = True, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for |
|
labels in `[0, ..., config.vocab_size]` |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") |
|
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") |
|
|
|
>>> # training |
|
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids |
|
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids |
|
>>> outputs = model(input_ids=input_ids, labels=labels) |
|
>>> loss = outputs.loss |
|
>>> logits = outputs.logits |
|
|
|
>>> # inference |
|
>>> input_ids = tokenizer( |
|
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> outputs = model.generate(input_ids) |
|
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
>>> # studies have shown that owning a dog is good for you. |
|
```""" |
|
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
decoder_head_mask = head_mask |
|
|
|
|
|
|
|
|
|
if encoder_outputs is None: |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: |
|
|
|
decoder_input_ids = self._shift_right(labels) |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
hidden_states = hidden_states.to(self.decoder.first_device) |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(self.decoder.first_device) |
|
if decoder_attention_mask is not None: |
|
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) |
|
|
|
|
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = decoder_outputs[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.encoder.first_device) |
|
self.lm_head = self.lm_head.to(self.encoder.first_device) |
|
sequence_output = sequence_output.to(self.lm_head.weight.device) |
|
|
|
if self.config.tie_word_embeddings: |
|
|
|
|
|
sequence_output = sequence_output * (self.model_dim**-0.5) |
|
|
|
lm_logits = self.lm_head(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
|
|
labels = labels.to(lm_logits.device) |
|
if len(labels.shape) == 2: |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
else: |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.reshape(-1)) |
|
|
|
|
|
if not return_dict: |
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
|
|
|
|
|
|
seq2seqlmoutput = Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
return seq2seqlmoutput |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
decoder_attention_mask=None, |
|
cross_attn_head_mask=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
**kwargs, |
|
): |
|
|
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
return { |
|
"decoder_input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"encoder_outputs": encoder_outputs, |
|
"attention_mask": attention_mask, |
|
"head_mask": head_mask, |
|
"decoder_head_mask": decoder_head_mask, |
|
"decoder_attention_mask": decoder_attention_mask, |
|
"cross_attn_head_mask": cross_attn_head_mask, |
|
"use_cache": use_cache, |
|
} |
|
|
|
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): |
|
return self._shift_right(labels) |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
|
|
|
|
if past_key_values is None: |
|
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") |
|
return past_key_values |
|
|
|
reordered_decoder_past = () |
|
for layer_past_states in past_key_values: |
|
|
|
|
|
reordered_layer_past_states = () |
|
for layer_past_state in layer_past_states: |
|
|
|
reordered_layer_past_states = reordered_layer_past_states + ( |
|
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), |
|
) |
|
|
|
if reordered_layer_past_states[0].shape != layer_past_states[0].shape: |
|
raise ValueError( |
|
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" |
|
) |
|
if len(reordered_layer_past_states) != len(layer_past_states): |
|
raise ValueError( |
|
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" |
|
) |
|
|
|
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) |
|
return reordered_decoder_past |
|
|
|
|
|
|
|
class T5MIMOEncoderModel(T5PreTrainedModel): |
|
_tied_weights_keys = ["encoder.embed_tokens.weight"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder"] |
|
|
|
def __init__(self, config: T5MIMOConfig): |
|
super().__init__(config) |
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" |
|
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," |
|
" 'block.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.model_parallel = True |
|
|
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.encoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, T5EncoderModel |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") |
|
>>> model = T5EncoderModel.from_pretrained("google-t5/t5-small") |
|
>>> input_ids = tokenizer( |
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> outputs = model(input_ids=input_ids) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
return encoder_outputs |
|
|
|
|
|
|
|
|