Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 147.00 +/- 74.77
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca2cf307a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca2cf30830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca2cf308c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca2cf30950>", "_build": "<function ActorCriticPolicy._build at 0x7fca2cf309e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fca2cf30a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca2cf30b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca2cf30b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca2cf30c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca2cf30cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca2cf30d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fca2cf6bde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652878146.8931386, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM7273sWcO5lulfvM69m7m7X8W7TysQOQAAgD8AAIA/xmzFPuR1KL0+vMW7hYZOuXRKP7xmFq27AACAPwAAgD8whmS+6/59P2ADAL9jVwO/1lB9viBmJ74AAAAAAAAAAGqvmr5Iu7C6EvSQO5tRkDj+LrE74xU8ugAAgD8AAIA/8mmxvldagT7lxNG7OmUbvq9hd71hpw+9AAAAAAAAAADtrzg+lMa1O66cGroDRKq32pRJPZ+GMjkAAIA/AACAPybYEj4xX7w+bIcuvi8kf751B0W9KhDXuwAAAAAAAAAATcd3PeEYnLrOgKq6XDCNtevSa7qpVcE5AACAPwAAgD/z+rk9XIt0uv6Z1joVE3I10+O3usWy+bkAAIA/AACAP0oFwb7PwzQ/ing+vosSlb7nOIi9En39PQAAAAAAAAAAAMvFvFkksz+IzvC+RYEevoBfQjztyVW8AAAAAAAAAABNOJU9j6ZUuv565jr8VrY1XjCiui6FBroAAIA/AACAP+abeD7m8dk+MDsnPbdXmb6YwA6919dIPgAAAAAAAAAAY2Rsvh8WnLvnja26Zurmt4iV/TyKXcU5AACAPwAAgD/alNU+sXNxvQP8yrqdefI447/nvcA39jkAAIA/AACAP82j47zCxrc/s1wBvv5mer650FO96v3qPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ8h5/x8zWUCUhpRSlIwBbJRN6AOMAXSUR0Chb796kZaWdX2UKGgGaAloD0MI3bQZp6EdZECUhpRSlGgVTegDaBZHQKFvzQ9ic5N1fZQoaAZoCWgPQwghPUUOEfhWQJSGlFKUaBVN6ANoFkdAoW/iUgSvknV9lChoBmgJaA9DCEa28/3UJ11AlIaUUpRoFU3oA2gWR0Chclzh5xBFdX2UKGgGaAloD0MIoIzxYfbNVUCUhpRSlGgVTegDaBZHQKFyXd43WFx1fZQoaAZoCWgPQwgB+RIqODhhQJSGlFKUaBVN6ANoFkdAoXYqMJhOQHV9lChoBmgJaA9DCD9uv3yykVFAlIaUUpRoFU3oA2gWR0ChdxePzWf9dX2UKGgGaAloD0MIFqdaC7MgP8CUhpRSlGgVS9hoFkdAoXcx53Tuv3V9lChoBmgJaA9DCLBYw0XuOFlAlIaUUpRoFU3oA2gWR0Chd+vGACnxdX2UKGgGaAloD0MILGfvjLY6J0CUhpRSlGgVTQsBaBZHQKF7xOryUcJ1fZQoaAZoCWgPQwgxem6hq6dhQJSGlFKUaBVN6ANoFkdAoX01hkRSP3V9lChoBmgJaA9DCO+SOCuipgbAlIaUUpRoFU3oA2gWR0ChgRMkQf6odX2UKGgGaAloD0MIbY5zm3D7XkCUhpRSlGgVTegDaBZHQKGFMlIEr5J1fZQoaAZoCWgPQwj+ZffkYaBfQJSGlFKUaBVN6ANoFkdAoYhG2AoXsXV9lChoBmgJaA9DCD2bVZ8r2GBAlIaUUpRoFU3oA2gWR0ChiXu/cnE3dX2UKGgGaAloD0MIibSNP1EfaECUhpRSlGgVTcUCaBZHQKGKjkBCD291fZQoaAZoCWgPQwgOZaiKKTtiQJSGlFKUaBVN6ANoFkdAoZEsfLcKxHV9lChoBmgJaA9DCJC/tKhP5jFAlIaUUpRoFUvsaBZHQKGe+etjkMl1fZQoaAZoCWgPQwiGVidnqM5pQJSGlFKUaBVNegFoFkdAoaGUlHBk7XV9lChoBmgJaA9DCGFSfHxCq2NAlIaUUpRoFU3oA2gWR0Chotij+JgtdX2UKGgGaAloD0MIEVK3s69eX0CUhpRSlGgVTegDaBZHQKGjGW1MM7V1fZQoaAZoCWgPQwhy3ZTy2mlhQJSGlFKUaBVN6ANoFkdAoaMkMPSUknV9lChoBmgJaA9DCF5jl6jeTGNAlIaUUpRoFU3oA2gWR0ChpXH13+uOdX2UKGgGaAloD0MI7wG6L2e7WUCUhpRSlGgVTegDaBZHQKGpG72+PBB1fZQoaAZoCWgPQwiB0Hr4MnhfQJSGlFKUaBVN6ANoFkdAoaoKmsNlRXV9lChoBmgJaA9DCK9eRUYHVF1AlIaUUpRoFU3oA2gWR0ChqiWiUPhAdX2UKGgGaAloD0MIb4RFRZw3W0CUhpRSlGgVTegDaBZHQKGq4uUUwi91fZQoaAZoCWgPQwiV2LW93YxeQJSGlFKUaBVN6ANoFkdAoa6EEPlMiHV9lChoBmgJaA9DCA+AuKtX/VJAlIaUUpRoFU3oA2gWR0Chr8suvlltdX2UKGgGaAloD0MImfOMfcnwRMCUhpRSlGgVS9hoFkdAobBqBkI5YHV9lChoBmgJaA9DCApJZvWOpWHAlIaUUpRoFU3DAWgWR0ChsfbEgntwdX2UKGgGaAloD0MIT5DY7h48T8CUhpRSlGgVS/poFkdAobJ17a7EpHV9lChoBmgJaA9DCG4Xmus0EjJAlIaUUpRoFU0GAWgWR0Chsr4gRsdldX2UKGgGaAloD0MI1Qj9TL0oYkCUhpRSlGgVTegDaBZHQKGzJoaDPGB1fZQoaAZoCWgPQwgMOiF00IdcQJSGlFKUaBVN6ANoFkdAobnnEQ5FPXV9lChoBmgJaA9DCPj578HrNWBAlIaUUpRoFU3oA2gWR0Chut1YyO7ydX2UKGgGaAloD0MIuwm+afogXUCUhpRSlGgVTZMDaBZHQKG+UUVzp5h1fZQoaAZoCWgPQwgT1zGuuPNeQJSGlFKUaBVN6ANoFkdAocD+Rq46O3V9lChoBmgJaA9DCGVUGcZdQ2RAlIaUUpRoFU3oA2gWR0Ch0WjmKZUldX2UKGgGaAloD0MIwytJnus3Z0CUhpRSlGgVTQkCaBZHQKHSHvfCQ911fZQoaAZoCWgPQwhWRE30+bxHwJSGlFKUaBVNHQFoFkdAodKzLlmvn3V9lChoBmgJaA9DCMMoCB5fnWBAlIaUUpRoFU3oA2gWR0Ch0s0vGp++dX2UKGgGaAloD0MIx2KbVDT8YkCUhpRSlGgVTegDaBZHQKHS13pOerd1fZQoaAZoCWgPQwh4RIXqZsBlQJSGlFKUaBVN6ANoFkdAodT3HHWBjHV9lChoBmgJaA9DCN49QPdloGdAlIaUUpRoFU2xAmgWR0Ch16kfcN6PdX2UKGgGaAloD0MIxVbQtMRyUkCUhpRSlGgVTegDaBZHQKHZ/pOerdZ1fZQoaAZoCWgPQwgNiuYBLKI1QJSGlFKUaBVL+2gWR0Ch2qmdAgPmdX2UKGgGaAloD0MIsaiI00mGMUCUhpRSlGgVTQMBaBZHQKHdPuF6Avt1fZQoaAZoCWgPQwjkgcgiTcFbQJSGlFKUaBVN6ANoFkdAod2CJKraNHV9lChoBmgJaA9DCCIcs+zJkWFAlIaUUpRoFU3oA2gWR0Ch3r7kGRmsdX2UKGgGaAloD0MIhXtl3qpQZECUhpRSlGgVTegDaBZHQKHfUBeXzDp1fZQoaAZoCWgPQwi0ykxp/cNgQJSGlFKUaBVN6ANoFkdAoeC9Y8uBc3V9lChoBmgJaA9DCEP+mUF8fVxAlIaUUpRoFU3oA2gWR0Ch4d/ra/RFdX2UKGgGaAloD0MIXkiHhzD+DUCUhpRSlGgVTRgBaBZHQKHjZZcs1891fZQoaAZoCWgPQwgmjjwQWStbQJSGlFKUaBVN6ANoFkdAoeh18Ti84HV9lChoBmgJaA9DCGkCRSxi+V5AlIaUUpRoFU3oA2gWR0Ch7OaMir1edX2UKGgGaAloD0MIBHY1eUoQa0CUhpRSlGgVTRwBaBZHQKHtRjBl+Vl1fZQoaAZoCWgPQwifVtEfGsdgQJSGlFKUaBVN6ANoFkdAoe+AlY2bX3V9lChoBmgJaA9DCMi0No1tsmFAlIaUUpRoFU3oA2gWR0Ch/9wNLDhtdX2UKGgGaAloD0MI+gj84WdJYkCUhpRSlGgVTegDaBZHQKIAnGx2SuB1fZQoaAZoCWgPQwg/xXHg1exQQJSGlFKUaBVN6ANoFkdAogEqzkZJkHV9lChoBmgJaA9DCC9q96sANmFAlIaUUpRoFU3oA2gWR0CiAULqt5lfdX2UKGgGaAloD0MI3CxeLAx/QUCUhpRSlGgVS9JoFkdAogPp6KLsKXV9lChoBmgJaA9DCMnIWdjT011AlIaUUpRoFU3oA2gWR0CiBjAqur6tdX2UKGgGaAloD0MIzoqoiT40YkCUhpRSlGgVTegDaBZHQKIIuZKFqSJ1fZQoaAZoCWgPQwjHRiBe1whdQJSGlFKUaBVN6ANoFkdAogxdUdaMaXV9lChoBmgJaA9DCHqmlxjLsmRAlIaUUpRoFU3oA2gWR0CiDLK3/givdX2UKGgGaAloD0MIXaj8a3nzXECUhpRSlGgVTegDaBZHQKIOEKD01651fZQoaAZoCWgPQwg6kst/yNxiQJSGlFKUaBVN6ANoFkdAog7AZjx0+3V9lChoBmgJaA9DCNWWOsjrMGJAlIaUUpRoFU3oA2gWR0CiEGGAbyYpdX2UKGgGaAloD0MIzM8NTdmrX0CUhpRSlGgVTegDaBZHQKIRoKWLP2R1fZQoaAZoCWgPQwiciH5t/bhCwJSGlFKUaBVL3WgWR0CiGB7PyCnQdX2UKGgGaAloD0MIGmzqPCoHYUCUhpRSlGgVTegDaBZHQKIY40ojOcF1fZQoaAZoCWgPQwgt7j8yHaBeQJSGlFKUaBVN6ANoFkdAoh2K4nWrfnV9lChoBmgJaA9DCCgLX19rgGFAlIaUUpRoFU3oA2gWR0CiHedIPK+0dX2UKGgGaAloD0MIsDxITxGpakCUhpRSlGgVTZoBaBZHQKIgjGKhtch1fZQoaAZoCWgPQwifceFAyIxgQJSGlFKUaBVN6ANoFkdAoiMG40/GEXV9lChoBmgJaA9DCAorFVTULWBAlIaUUpRoFU3oA2gWR0CiMOKX4TK1dX2UKGgGaAloD0MILZPheL5TYkCUhpRSlGgVTegDaBZHQKIxdRTCLuR1fZQoaAZoCWgPQwiHTs+7sdBeQJSGlFKUaBVN6ANoFkdAojGNM7EHdHV9lChoBmgJaA9DCBgFwePbc19AlIaUUpRoFU3oA2gWR0CiNGRwZOzqdX2UKGgGaAloD0MI9P3UeOm0XUCUhpRSlGgVTegDaBZHQKI2w8gZCOZ1fZQoaAZoCWgPQwiLql/pfAw3wJSGlFKUaBVL12gWR0CiOLrFn7HidX2UKGgGaAloD0MI7MIPzqfnYECUhpRSlGgVTegDaBZHQKI5S4SYgJV1fZQoaAZoCWgPQwhdiqvKPrFiQJSGlFKUaBVN6ANoFkdAojz0FEAo5XV9lChoBmgJaA9DCLLa/L/qaFtAlIaUUpRoFU3oA2gWR0CiPUNQ0oBrdX2UKGgGaAloD0MIJezbSUTFV0CUhpRSlGgVTegDaBZHQKI+rlEJBxB1fZQoaAZoCWgPQwjhB+dTx95YQJSGlFKUaBVN6ANoFkdAoj9kfozN2XV9lChoBmgJaA9DCPW+8bVnviVAlIaUUpRoFU3WAmgWR0CiRI9GAkLQdX2UKGgGaAloD0MIlpS7z/GVP8CUhpRSlGgVTQ4BaBZHQKJHV1W8yvd1fZQoaAZoCWgPQwjToj7JHZY2QJSGlFKUaBVL1GgWR0CiR56jesPrdX2UKGgGaAloD0MIqdiY1xFeXkCUhpRSlGgVTegDaBZHQKJJ8H8CPp91fZQoaAZoCWgPQwhYqaCi6qVaQJSGlFKUaBVN6ANoFkdAokq5u2qkunV9lChoBmgJaA9DCJG6nX3lISjAlIaUUpRoFU0CAWgWR0CiTr0vf0mMdX2UKGgGaAloD0MI6gd1kcIuYkCUhpRSlGgVTegDaBZHQKJPvct5D7Z1fZQoaAZoCWgPQwg7/aAuUuj3v5SGlFKUaBVL7mgWR0CiUOFV94NadX2UKGgGaAloD0MILqpFRDExYUCUhpRSlGgVTegDaBZHQKJSkJMQEp11fZQoaAZoCWgPQwirlnSUgwkmwJSGlFKUaBVNAAFoFkdAolRbq6e5F3V9lChoBmgJaA9DCMwHBDqT12BAlIaUUpRoFU3oA2gWR0CiVQTW5H3DdX2UKGgGaAloD0MINEqX/iWbX0CUhpRSlGgVTegDaBZHQKJVs4UeuFJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13d1170b89e3f37aa3049622c414134f840500d7b8daabdded7c43fb6f2acf27
|
3 |
+
size 144036
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fca2cf307a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca2cf30830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca2cf308c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca2cf30950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fca2cf309e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fca2cf30a70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca2cf30b00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fca2cf30b90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca2cf30c20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca2cf30cb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca2cf30d40>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fca2cf6bde0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652878146.8931386,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM7273sWcO5lulfvM69m7m7X8W7TysQOQAAgD8AAIA/xmzFPuR1KL0+vMW7hYZOuXRKP7xmFq27AACAPwAAgD8whmS+6/59P2ADAL9jVwO/1lB9viBmJ74AAAAAAAAAAGqvmr5Iu7C6EvSQO5tRkDj+LrE74xU8ugAAgD8AAIA/8mmxvldagT7lxNG7OmUbvq9hd71hpw+9AAAAAAAAAADtrzg+lMa1O66cGroDRKq32pRJPZ+GMjkAAIA/AACAPybYEj4xX7w+bIcuvi8kf751B0W9KhDXuwAAAAAAAAAATcd3PeEYnLrOgKq6XDCNtevSa7qpVcE5AACAPwAAgD/z+rk9XIt0uv6Z1joVE3I10+O3usWy+bkAAIA/AACAP0oFwb7PwzQ/ing+vosSlb7nOIi9En39PQAAAAAAAAAAAMvFvFkksz+IzvC+RYEevoBfQjztyVW8AAAAAAAAAABNOJU9j6ZUuv565jr8VrY1XjCiui6FBroAAIA/AACAP+abeD7m8dk+MDsnPbdXmb6YwA6919dIPgAAAAAAAAAAY2Rsvh8WnLvnja26Zurmt4iV/TyKXcU5AACAPwAAgD/alNU+sXNxvQP8yrqdefI447/nvcA39jkAAIA/AACAP82j47zCxrc/s1wBvv5mer650FO96v3qPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ8h5/x8zWUCUhpRSlIwBbJRN6AOMAXSUR0Chb796kZaWdX2UKGgGaAloD0MI3bQZp6EdZECUhpRSlGgVTegDaBZHQKFvzQ9ic5N1fZQoaAZoCWgPQwghPUUOEfhWQJSGlFKUaBVN6ANoFkdAoW/iUgSvknV9lChoBmgJaA9DCEa28/3UJ11AlIaUUpRoFU3oA2gWR0Chclzh5xBFdX2UKGgGaAloD0MIoIzxYfbNVUCUhpRSlGgVTegDaBZHQKFyXd43WFx1fZQoaAZoCWgPQwgB+RIqODhhQJSGlFKUaBVN6ANoFkdAoXYqMJhOQHV9lChoBmgJaA9DCD9uv3yykVFAlIaUUpRoFU3oA2gWR0ChdxePzWf9dX2UKGgGaAloD0MIFqdaC7MgP8CUhpRSlGgVS9hoFkdAoXcx53Tuv3V9lChoBmgJaA9DCLBYw0XuOFlAlIaUUpRoFU3oA2gWR0Chd+vGACnxdX2UKGgGaAloD0MILGfvjLY6J0CUhpRSlGgVTQsBaBZHQKF7xOryUcJ1fZQoaAZoCWgPQwgxem6hq6dhQJSGlFKUaBVN6ANoFkdAoX01hkRSP3V9lChoBmgJaA9DCO+SOCuipgbAlIaUUpRoFU3oA2gWR0ChgRMkQf6odX2UKGgGaAloD0MIbY5zm3D7XkCUhpRSlGgVTegDaBZHQKGFMlIEr5J1fZQoaAZoCWgPQwj+ZffkYaBfQJSGlFKUaBVN6ANoFkdAoYhG2AoXsXV9lChoBmgJaA9DCD2bVZ8r2GBAlIaUUpRoFU3oA2gWR0ChiXu/cnE3dX2UKGgGaAloD0MIibSNP1EfaECUhpRSlGgVTcUCaBZHQKGKjkBCD291fZQoaAZoCWgPQwgOZaiKKTtiQJSGlFKUaBVN6ANoFkdAoZEsfLcKxHV9lChoBmgJaA9DCJC/tKhP5jFAlIaUUpRoFUvsaBZHQKGe+etjkMl1fZQoaAZoCWgPQwiGVidnqM5pQJSGlFKUaBVNegFoFkdAoaGUlHBk7XV9lChoBmgJaA9DCGFSfHxCq2NAlIaUUpRoFU3oA2gWR0Chotij+JgtdX2UKGgGaAloD0MIEVK3s69eX0CUhpRSlGgVTegDaBZHQKGjGW1MM7V1fZQoaAZoCWgPQwhy3ZTy2mlhQJSGlFKUaBVN6ANoFkdAoaMkMPSUknV9lChoBmgJaA9DCF5jl6jeTGNAlIaUUpRoFU3oA2gWR0ChpXH13+uOdX2UKGgGaAloD0MI7wG6L2e7WUCUhpRSlGgVTegDaBZHQKGpG72+PBB1fZQoaAZoCWgPQwiB0Hr4MnhfQJSGlFKUaBVN6ANoFkdAoaoKmsNlRXV9lChoBmgJaA9DCK9eRUYHVF1AlIaUUpRoFU3oA2gWR0ChqiWiUPhAdX2UKGgGaAloD0MIb4RFRZw3W0CUhpRSlGgVTegDaBZHQKGq4uUUwi91fZQoaAZoCWgPQwiV2LW93YxeQJSGlFKUaBVN6ANoFkdAoa6EEPlMiHV9lChoBmgJaA9DCA+AuKtX/VJAlIaUUpRoFU3oA2gWR0Chr8suvlltdX2UKGgGaAloD0MImfOMfcnwRMCUhpRSlGgVS9hoFkdAobBqBkI5YHV9lChoBmgJaA9DCApJZvWOpWHAlIaUUpRoFU3DAWgWR0ChsfbEgntwdX2UKGgGaAloD0MIT5DY7h48T8CUhpRSlGgVS/poFkdAobJ17a7EpHV9lChoBmgJaA9DCG4Xmus0EjJAlIaUUpRoFU0GAWgWR0Chsr4gRsdldX2UKGgGaAloD0MI1Qj9TL0oYkCUhpRSlGgVTegDaBZHQKGzJoaDPGB1fZQoaAZoCWgPQwgMOiF00IdcQJSGlFKUaBVN6ANoFkdAobnnEQ5FPXV9lChoBmgJaA9DCPj578HrNWBAlIaUUpRoFU3oA2gWR0Chut1YyO7ydX2UKGgGaAloD0MIuwm+afogXUCUhpRSlGgVTZMDaBZHQKG+UUVzp5h1fZQoaAZoCWgPQwgT1zGuuPNeQJSGlFKUaBVN6ANoFkdAocD+Rq46O3V9lChoBmgJaA9DCGVUGcZdQ2RAlIaUUpRoFU3oA2gWR0Ch0WjmKZUldX2UKGgGaAloD0MIwytJnus3Z0CUhpRSlGgVTQkCaBZHQKHSHvfCQ911fZQoaAZoCWgPQwhWRE30+bxHwJSGlFKUaBVNHQFoFkdAodKzLlmvn3V9lChoBmgJaA9DCMMoCB5fnWBAlIaUUpRoFU3oA2gWR0Ch0s0vGp++dX2UKGgGaAloD0MIx2KbVDT8YkCUhpRSlGgVTegDaBZHQKHS13pOerd1fZQoaAZoCWgPQwh4RIXqZsBlQJSGlFKUaBVN6ANoFkdAodT3HHWBjHV9lChoBmgJaA9DCN49QPdloGdAlIaUUpRoFU2xAmgWR0Ch16kfcN6PdX2UKGgGaAloD0MIxVbQtMRyUkCUhpRSlGgVTegDaBZHQKHZ/pOerdZ1fZQoaAZoCWgPQwgNiuYBLKI1QJSGlFKUaBVL+2gWR0Ch2qmdAgPmdX2UKGgGaAloD0MIsaiI00mGMUCUhpRSlGgVTQMBaBZHQKHdPuF6Avt1fZQoaAZoCWgPQwjkgcgiTcFbQJSGlFKUaBVN6ANoFkdAod2CJKraNHV9lChoBmgJaA9DCCIcs+zJkWFAlIaUUpRoFU3oA2gWR0Ch3r7kGRmsdX2UKGgGaAloD0MIhXtl3qpQZECUhpRSlGgVTegDaBZHQKHfUBeXzDp1fZQoaAZoCWgPQwi0ykxp/cNgQJSGlFKUaBVN6ANoFkdAoeC9Y8uBc3V9lChoBmgJaA9DCEP+mUF8fVxAlIaUUpRoFU3oA2gWR0Ch4d/ra/RFdX2UKGgGaAloD0MIXkiHhzD+DUCUhpRSlGgVTRgBaBZHQKHjZZcs1891fZQoaAZoCWgPQwgmjjwQWStbQJSGlFKUaBVN6ANoFkdAoeh18Ti84HV9lChoBmgJaA9DCGkCRSxi+V5AlIaUUpRoFU3oA2gWR0Ch7OaMir1edX2UKGgGaAloD0MIBHY1eUoQa0CUhpRSlGgVTRwBaBZHQKHtRjBl+Vl1fZQoaAZoCWgPQwifVtEfGsdgQJSGlFKUaBVN6ANoFkdAoe+AlY2bX3V9lChoBmgJaA9DCMi0No1tsmFAlIaUUpRoFU3oA2gWR0Ch/9wNLDhtdX2UKGgGaAloD0MI+gj84WdJYkCUhpRSlGgVTegDaBZHQKIAnGx2SuB1fZQoaAZoCWgPQwg/xXHg1exQQJSGlFKUaBVN6ANoFkdAogEqzkZJkHV9lChoBmgJaA9DCC9q96sANmFAlIaUUpRoFU3oA2gWR0CiAULqt5lfdX2UKGgGaAloD0MI3CxeLAx/QUCUhpRSlGgVS9JoFkdAogPp6KLsKXV9lChoBmgJaA9DCMnIWdjT011AlIaUUpRoFU3oA2gWR0CiBjAqur6tdX2UKGgGaAloD0MIzoqoiT40YkCUhpRSlGgVTegDaBZHQKIIuZKFqSJ1fZQoaAZoCWgPQwjHRiBe1whdQJSGlFKUaBVN6ANoFkdAogxdUdaMaXV9lChoBmgJaA9DCHqmlxjLsmRAlIaUUpRoFU3oA2gWR0CiDLK3/givdX2UKGgGaAloD0MIXaj8a3nzXECUhpRSlGgVTegDaBZHQKIOEKD01651fZQoaAZoCWgPQwg6kst/yNxiQJSGlFKUaBVN6ANoFkdAog7AZjx0+3V9lChoBmgJaA9DCNWWOsjrMGJAlIaUUpRoFU3oA2gWR0CiEGGAbyYpdX2UKGgGaAloD0MIzM8NTdmrX0CUhpRSlGgVTegDaBZHQKIRoKWLP2R1fZQoaAZoCWgPQwiciH5t/bhCwJSGlFKUaBVL3WgWR0CiGB7PyCnQdX2UKGgGaAloD0MIGmzqPCoHYUCUhpRSlGgVTegDaBZHQKIY40ojOcF1fZQoaAZoCWgPQwgt7j8yHaBeQJSGlFKUaBVN6ANoFkdAoh2K4nWrfnV9lChoBmgJaA9DCCgLX19rgGFAlIaUUpRoFU3oA2gWR0CiHedIPK+0dX2UKGgGaAloD0MIsDxITxGpakCUhpRSlGgVTZoBaBZHQKIgjGKhtch1fZQoaAZoCWgPQwifceFAyIxgQJSGlFKUaBVN6ANoFkdAoiMG40/GEXV9lChoBmgJaA9DCAorFVTULWBAlIaUUpRoFU3oA2gWR0CiMOKX4TK1dX2UKGgGaAloD0MILZPheL5TYkCUhpRSlGgVTegDaBZHQKIxdRTCLuR1fZQoaAZoCWgPQwiHTs+7sdBeQJSGlFKUaBVN6ANoFkdAojGNM7EHdHV9lChoBmgJaA9DCBgFwePbc19AlIaUUpRoFU3oA2gWR0CiNGRwZOzqdX2UKGgGaAloD0MI9P3UeOm0XUCUhpRSlGgVTegDaBZHQKI2w8gZCOZ1fZQoaAZoCWgPQwiLql/pfAw3wJSGlFKUaBVL12gWR0CiOLrFn7HidX2UKGgGaAloD0MI7MIPzqfnYECUhpRSlGgVTegDaBZHQKI5S4SYgJV1fZQoaAZoCWgPQwhdiqvKPrFiQJSGlFKUaBVN6ANoFkdAojz0FEAo5XV9lChoBmgJaA9DCLLa/L/qaFtAlIaUUpRoFU3oA2gWR0CiPUNQ0oBrdX2UKGgGaAloD0MIJezbSUTFV0CUhpRSlGgVTegDaBZHQKI+rlEJBxB1fZQoaAZoCWgPQwjhB+dTx95YQJSGlFKUaBVN6ANoFkdAoj9kfozN2XV9lChoBmgJaA9DCPW+8bVnviVAlIaUUpRoFU3WAmgWR0CiRI9GAkLQdX2UKGgGaAloD0MIlpS7z/GVP8CUhpRSlGgVTQ4BaBZHQKJHV1W8yvd1fZQoaAZoCWgPQwjToj7JHZY2QJSGlFKUaBVL1GgWR0CiR56jesPrdX2UKGgGaAloD0MIqdiY1xFeXkCUhpRSlGgVTegDaBZHQKJJ8H8CPp91fZQoaAZoCWgPQwhYqaCi6qVaQJSGlFKUaBVN6ANoFkdAokq5u2qkunV9lChoBmgJaA9DCJG6nX3lISjAlIaUUpRoFU0CAWgWR0CiTr0vf0mMdX2UKGgGaAloD0MI6gd1kcIuYkCUhpRSlGgVTegDaBZHQKJPvct5D7Z1fZQoaAZoCWgPQwg7/aAuUuj3v5SGlFKUaBVL7mgWR0CiUOFV94NadX2UKGgGaAloD0MILqpFRDExYUCUhpRSlGgVTegDaBZHQKJSkJMQEp11fZQoaAZoCWgPQwirlnSUgwkmwJSGlFKUaBVNAAFoFkdAolRbq6e5F3V9lChoBmgJaA9DCMwHBDqT12BAlIaUUpRoFU3oA2gWR0CiVQTW5H3DdX2UKGgGaAloD0MINEqX/iWbX0CUhpRSlGgVTegDaBZHQKJVs4UeuFJ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:622a87dda338bef8dbe5598c4c06a2de7af3da69907eb701beddd097ba0e75c7
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a21037e8aa312a0e8ea51fd058c21be56ecc13185b8147079e42da633805ec14
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:223c404542b38a60d2cc201b252552c25323b50fe8852994d0fd96091b8f13c8
|
3 |
+
size 263526
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 147.0025954931907, "std_reward": 74.77179215292962, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-18T13:05:52.859980"}
|