|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from contextlib import nullcontext |
|
import argparse |
|
import copy |
|
import logging |
|
import math |
|
import os |
|
import shutil |
|
from pathlib import Path |
|
from datasets import load_dataset |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from peft import LoraConfig, PeftModel, get_peft_model |
|
from PIL import Image |
|
from PIL.ImageOps import exif_transpose |
|
from torch.utils.data import DataLoader, Dataset, default_collate |
|
from torchvision import transforms |
|
from transformers import ( |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
) |
|
|
|
import diffusers.optimization |
|
from diffusers import AmusedPipeline, AmusedScheduler, EMAModel, UVit2DModel, VQModel |
|
from diffusers.utils import is_wandb_available |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dataset", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="A Hugging Face dataset containing the training images", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="A folder containing the training data of instance images.", |
|
) |
|
parser.add_argument( |
|
"--instance_data_image", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="A single training image" |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") |
|
parser.add_argument("--ema_decay", type=float, default=0.9999) |
|
parser.add_argument("--ema_update_after_step", type=int, default=0) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="muse_training", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " |
|
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." |
|
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." |
|
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" |
|
"instructions." |
|
), |
|
) |
|
parser.add_argument( |
|
"--logging_steps", |
|
type=int, |
|
default=50, |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=( |
|
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." |
|
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" |
|
" for more details" |
|
), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=0.0003, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Run validation every X steps. Validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`" |
|
" and logging the images." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument("--validation_prompts", type=str, nargs="*") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument("--split_vae_encode", type=int, required=False, default=None) |
|
parser.add_argument("--min_masking_rate", type=float, default=0.0) |
|
parser.add_argument("--cond_dropout_prob", type=float, default=0.0) |
|
parser.add_argument("--max_grad_norm", default=None, type=float, help="Max gradient norm.", required=False) |
|
parser.add_argument("--use_lora", action="store_true", help="TODO") |
|
parser.add_argument("--lora_r", default=16, type=int) |
|
parser.add_argument("--lora_alpha", default=32, type=int) |
|
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+") |
|
parser.add_argument("--train_text_encoder", action="store_true") |
|
parser.add_argument("--image_key", type=str, required=False) |
|
parser.add_argument("--prompt_key", type=str, required=False) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument("--prompt_prefix", type=str, required=False, default=None) |
|
|
|
args = parser.parse_args() |
|
|
|
if args.report_to == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
|
|
num_datasources = sum([x is not None for x in [args.instance_data_dir, args.instance_data_image, args.instance_data_dataset]]) |
|
|
|
if num_datasources != 1: |
|
raise ValueError("provide one and only one of `--instance_data_dir`, `--instance_data_image`, or `--instance_data_dataset`") |
|
|
|
if args.instance_data_dir is not None: |
|
if not os.path.exists(args.instance_data_dir): |
|
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}") |
|
|
|
if args.instance_data_image is not None: |
|
if not os.path.exists(args.instance_data_image): |
|
raise ValueError(f"Does not exist: `--args.instance_data_image` {args.instance_data_image}") |
|
|
|
if args.instance_data_dataset is not None and (args.image_key is None or args.prompt_key is None): |
|
raise ValueError("`--instance_data_dataset` requires setting `--image_key` and `--prompt_key`") |
|
|
|
return args |
|
|
|
class InstanceDataRootDataset(Dataset): |
|
def __init__( |
|
self, |
|
instance_data_root, |
|
tokenizer, |
|
size=512, |
|
): |
|
self.size = size |
|
self.tokenizer = tokenizer |
|
self.instance_images_path = list(Path(instance_data_root).iterdir()) |
|
|
|
def __len__(self): |
|
return len(self.instance_images_path) |
|
|
|
def __getitem__(self, index): |
|
image_path = self.instance_images_path[index % len(self.instance_images_path)] |
|
instance_image = Image.open(image_path) |
|
rv = process_image(instance_image, self.size) |
|
|
|
prompt = os.path.splitext(os.path.basename(image_path))[0] |
|
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0] |
|
return rv |
|
|
|
class InstanceDataImageDataset(Dataset): |
|
def __init__( |
|
self, |
|
instance_data_image, |
|
train_batch_size, |
|
size=512, |
|
): |
|
self.value = process_image(Image.open(instance_data_image), size) |
|
self.train_batch_size = train_batch_size |
|
|
|
def __len__(self): |
|
|
|
|
|
return self.train_batch_size |
|
|
|
def __getitem__(self, index): |
|
return self.value |
|
|
|
class HuggingFaceDataset(Dataset): |
|
def __init__( |
|
self, |
|
hf_dataset, |
|
tokenizer, |
|
image_key, |
|
prompt_key, |
|
prompt_prefix=None, |
|
size=512, |
|
): |
|
self.size = size |
|
self.image_key = image_key |
|
self.prompt_key = prompt_key |
|
self.tokenizer = tokenizer |
|
self.hf_dataset = hf_dataset |
|
self.prompt_prefix = prompt_prefix |
|
|
|
def __len__(self): |
|
return len(self.hf_dataset) |
|
|
|
def __getitem__(self, index): |
|
item = self.hf_dataset[index] |
|
|
|
rv = process_image(item[self.image_key], self.size) |
|
|
|
prompt = item[self.prompt_key] |
|
|
|
if self.prompt_prefix is not None: |
|
prompt = self.prompt_prefix + prompt |
|
|
|
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0] |
|
|
|
return rv |
|
|
|
def process_image(image, size): |
|
image = exif_transpose(image) |
|
|
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
|
|
orig_height = image.height |
|
orig_width = image.width |
|
|
|
image = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)(image) |
|
|
|
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(size, size)) |
|
image = transforms.functional.crop(image, c_top, c_left, size, size) |
|
|
|
image = transforms.ToTensor()(image) |
|
|
|
micro_conds = torch.tensor( |
|
[ |
|
orig_width, |
|
orig_height, |
|
c_top, |
|
c_left, |
|
6.0 |
|
], |
|
) |
|
|
|
return {"image": image, "micro_conds": micro_conds} |
|
|
|
@torch.no_grad() |
|
def tokenize_prompt(tokenizer, prompt): |
|
return tokenizer( |
|
prompt, |
|
truncation=True, |
|
padding="max_length", |
|
max_length=77, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
def encode_prompt(text_encoder, input_ids): |
|
outputs = text_encoder(input_ids, return_dict=True, output_hidden_states=True) |
|
encoder_hidden_states = outputs.hidden_states[-2] |
|
cond_embeds = outputs[0] |
|
return encoder_hidden_states, cond_embeds |
|
|
|
|
|
def main(args): |
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
if accelerator.is_main_process: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("amused", config=vars(copy.deepcopy(args))) |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
resume_from_checkpoint = args.resume_from_checkpoint |
|
if resume_from_checkpoint: |
|
if resume_from_checkpoint == "latest": |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
if len(dirs) > 0: |
|
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1]) |
|
else: |
|
resume_from_checkpoint = None |
|
|
|
if resume_from_checkpoint is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}") |
|
|
|
|
|
text_encoder = CLIPTextModelWithProjection.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant |
|
) |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, variant=args.variant |
|
) |
|
vq_model = VQModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant |
|
) |
|
|
|
if args.train_text_encoder: |
|
text_encoder.train() |
|
text_encoder.requires_grad_(True) |
|
else: |
|
text_encoder.eval() |
|
text_encoder.requires_grad_(False) |
|
|
|
vq_model.requires_grad_(False) |
|
|
|
if args.use_lora: |
|
model = UVit2DModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant |
|
) |
|
|
|
if resume_from_checkpoint is not None: |
|
model = PeftModel.from_pretrained( |
|
model, os.path.join(resume_from_checkpoint, "transformer"), is_trainable=True |
|
) |
|
else: |
|
lora_config = LoraConfig( |
|
r=args.lora_r, |
|
lora_alpha=args.lora_alpha, |
|
target_modules=args.lora_target_modules, |
|
) |
|
model = get_peft_model(model, lora_config) |
|
else: |
|
if resume_from_checkpoint is not None: |
|
model = UVit2DModel.from_pretrained(resume_from_checkpoint, subfolder="transformer") |
|
else: |
|
model = UVit2DModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="transformer", |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
|
|
model.train() |
|
|
|
if args.gradient_checkpointing: |
|
model.enable_gradient_checkpointing() |
|
if args.train_text_encoder: |
|
text_encoder.gradient_checkpointing_enable() |
|
|
|
if args.use_ema: |
|
if resume_from_checkpoint is not None: |
|
ema = EMAModel.from_pretrained(os.path.join(resume_from_checkpoint, "ema_model"), model_cls=UVit2DModel) |
|
else: |
|
ema = EMAModel( |
|
model.parameters(), |
|
decay=args.ema_decay, |
|
update_after_step=args.ema_update_after_step, |
|
model_cls=UVit2DModel, |
|
model_config=model.config, |
|
) |
|
|
|
|
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
for model in models: |
|
if isinstance(model, UVit2DModel): |
|
models[0].save_pretrained(os.path.join(output_dir, "transformer")) |
|
elif isinstance(model, CLIPTextModelWithProjection): |
|
models[0].save_pretrained(os.path.join(output_dir, "text_encoder")) |
|
|
|
weights.pop() |
|
|
|
if args.use_ema: |
|
ema.save_pretrained(os.path.join(output_dir, "ema_model")) |
|
|
|
def load_model_hook(models, input_dir): |
|
|
|
|
|
for _ in range(len(models)): |
|
models.pop() |
|
|
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
) |
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" |
|
) |
|
|
|
optimizer_cls = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_cls = torch.optim.AdamW |
|
|
|
|
|
no_decay = ["bias", "layer_norm.weight", "mlm_ln.weight", "embeddings.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": args.adam_weight_decay, |
|
}, |
|
{ |
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
|
|
|
|
optimizer = optimizer_cls( |
|
optimizer_grouped_parameters, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
logger.info("Creating dataloaders and lr_scheduler") |
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
if args.instance_data_dir is not None: |
|
dataset = InstanceDataRootDataset( |
|
instance_data_root=args.instance_data_dir, |
|
tokenizer=tokenizer, |
|
size=args.resolution, |
|
) |
|
elif args.instance_data_image is not None: |
|
dataset = InstanceDataImageDataset( |
|
instance_data_image=args.instance_data_image, |
|
train_batch_size=args.train_batch_size, |
|
size=args.resolution, |
|
) |
|
elif args.instance_data_dataset is not None: |
|
dataset = HuggingFaceDataset( |
|
hf_dataset=load_dataset(args.instance_data_dataset, split="train"), |
|
tokenizer=tokenizer, |
|
image_key=args.image_key, |
|
prompt_key=args.prompt_key, |
|
prompt_prefix=args.prompt_prefix, |
|
size=args.resolution, |
|
) |
|
else: |
|
assert False |
|
|
|
train_dataloader = DataLoader( |
|
dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
num_workers=args.dataloader_num_workers, |
|
collate_fn=default_collate, |
|
) |
|
train_dataloader.num_batches = len(train_dataloader) |
|
|
|
lr_scheduler = diffusers.optimization.get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_training_steps=args.max_train_steps*accelerator.num_processes, |
|
num_warmup_steps=args.lr_warmup_steps*accelerator.num_processes, |
|
) |
|
|
|
logger.info("Preparing model, optimizer and dataloaders") |
|
|
|
if args.train_text_encoder: |
|
model, optimizer, lr_scheduler, train_dataloader, text_encoder = accelerator.prepare( |
|
model, optimizer, lr_scheduler, train_dataloader, text_encoder |
|
) |
|
else: |
|
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare( |
|
model, optimizer, lr_scheduler, train_dataloader |
|
) |
|
|
|
train_dataloader.num_batches = len(train_dataloader) |
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
if not args.train_text_encoder: |
|
text_encoder.to(device=accelerator.device, dtype=weight_dtype) |
|
|
|
vq_model.to(device=accelerator.device) |
|
|
|
if args.use_ema: |
|
ema.to(accelerator.device) |
|
|
|
with nullcontext() if args.train_text_encoder else torch.no_grad(): |
|
empty_embeds, empty_clip_embeds = encode_prompt(text_encoder, tokenize_prompt(tokenizer, "").to(text_encoder.device, non_blocking=True)) |
|
|
|
|
|
if args.instance_data_image is not None: |
|
prompt = os.path.splitext(os.path.basename(args.instance_data_image))[0] |
|
encoder_hidden_states, cond_embeds = encode_prompt(text_encoder, tokenize_prompt(tokenizer, prompt).to(text_encoder.device, non_blocking=True)) |
|
encoder_hidden_states = encoder_hidden_states.repeat(args.train_batch_size, 1, 1) |
|
cond_embeds = cond_embeds.repeat(args.train_batch_size, 1) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) |
|
|
|
|
|
|
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num training steps = {args.max_train_steps}") |
|
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
|
|
if resume_from_checkpoint is None: |
|
global_step = 0 |
|
first_epoch = 0 |
|
else: |
|
accelerator.load_state(resume_from_checkpoint) |
|
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1]) |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
|
|
|
|
|
|
for epoch in range(first_epoch, num_train_epochs): |
|
for batch in train_dataloader: |
|
with torch.no_grad(): |
|
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True) |
|
pixel_values = batch["image"].to(accelerator.device, non_blocking=True) |
|
|
|
batch_size = pixel_values.shape[0] |
|
|
|
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size |
|
num_splits = math.ceil(batch_size / split_batch_size) |
|
image_tokens = [] |
|
for i in range(num_splits): |
|
start_idx = i * split_batch_size |
|
end_idx = min((i + 1) * split_batch_size, batch_size) |
|
bs = pixel_values.shape[0] |
|
image_tokens.append( |
|
vq_model.quantize(vq_model.encode(pixel_values[start_idx:end_idx]).latents)[2][2].reshape( |
|
bs, -1 |
|
) |
|
) |
|
image_tokens = torch.cat(image_tokens, dim=0) |
|
|
|
batch_size, seq_len = image_tokens.shape |
|
|
|
timesteps = torch.rand(batch_size, device=image_tokens.device) |
|
mask_prob = torch.cos(timesteps * math.pi * 0.5) |
|
mask_prob = mask_prob.clip(args.min_masking_rate) |
|
|
|
num_token_masked = (seq_len * mask_prob).round().clamp(min=1) |
|
batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1) |
|
mask = batch_randperm < num_token_masked.unsqueeze(-1) |
|
|
|
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1 |
|
input_ids = torch.where(mask, mask_id, image_tokens) |
|
labels = torch.where(mask, image_tokens, -100) |
|
|
|
if args.cond_dropout_prob > 0.0: |
|
assert encoder_hidden_states is not None |
|
|
|
batch_size = encoder_hidden_states.shape[0] |
|
|
|
mask = ( |
|
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1) |
|
< args.cond_dropout_prob |
|
) |
|
|
|
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1) |
|
encoder_hidden_states = torch.where( |
|
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_ |
|
) |
|
|
|
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1) |
|
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_) |
|
|
|
bs = input_ids.shape[0] |
|
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1) |
|
resolution = args.resolution // vae_scale_factor |
|
input_ids = input_ids.reshape(bs, resolution, resolution) |
|
|
|
if "prompt_input_ids" in batch: |
|
with nullcontext() if args.train_text_encoder else torch.no_grad(): |
|
encoder_hidden_states, cond_embeds = encode_prompt(text_encoder, batch["prompt_input_ids"].to(accelerator.device, non_blocking=True)) |
|
|
|
|
|
with accelerator.accumulate(model): |
|
codebook_size = accelerator.unwrap_model(model).config.codebook_size |
|
|
|
logits = ( |
|
model( |
|
input_ids=input_ids, |
|
encoder_hidden_states=encoder_hidden_states, |
|
micro_conds=micro_conds, |
|
pooled_text_emb=cond_embeds, |
|
) |
|
.reshape(bs, codebook_size, -1) |
|
.permute(0, 2, 1) |
|
.reshape(-1, codebook_size) |
|
) |
|
|
|
loss = F.cross_entropy( |
|
logits, |
|
labels.view(-1), |
|
ignore_index=-100, |
|
reduction="mean", |
|
) |
|
|
|
|
|
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() |
|
avg_masking_rate = accelerator.gather(mask_prob.repeat(args.train_batch_size)).mean() |
|
|
|
accelerator.backward(loss) |
|
|
|
if args.max_grad_norm is not None and accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
|
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
if args.use_ema: |
|
ema.step(model.parameters()) |
|
|
|
if (global_step + 1) % args.logging_steps == 0: |
|
logs = { |
|
"step_loss": avg_loss.item(), |
|
"lr": lr_scheduler.get_last_lr()[0], |
|
"avg_masking_rate": avg_masking_rate.item(), |
|
} |
|
accelerator.log(logs, step=global_step + 1) |
|
|
|
logger.info( |
|
f"Step: {global_step + 1} " |
|
f"Loss: {avg_loss.item():0.4f} " |
|
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}" |
|
) |
|
|
|
if (global_step + 1) % args.checkpointing_steps == 0: |
|
save_checkpoint(args, accelerator, global_step + 1) |
|
|
|
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process: |
|
if args.use_ema: |
|
ema.store(model.parameters()) |
|
ema.copy_to(model.parameters()) |
|
|
|
with torch.no_grad(): |
|
logger.info("Generating images...") |
|
|
|
model.eval() |
|
|
|
if args.train_text_encoder: |
|
text_encoder.eval() |
|
|
|
scheduler = AmusedScheduler.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="scheduler", |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
|
|
pipe = AmusedPipeline( |
|
transformer=accelerator.unwrap_model(model), |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
vqvae=vq_model, |
|
scheduler=scheduler, |
|
) |
|
|
|
pil_images = pipe(prompt=args.validation_prompts).images |
|
wandb_images = [ |
|
wandb.Image(image, caption=args.validation_prompts[i]) |
|
for i, image in enumerate(pil_images) |
|
] |
|
|
|
wandb.log({"generated_images": wandb_images}, step=global_step + 1) |
|
|
|
model.train() |
|
|
|
if args.train_text_encoder: |
|
text_encoder.train() |
|
|
|
if args.use_ema: |
|
ema.restore(model.parameters()) |
|
|
|
global_step += 1 |
|
|
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
save_checkpoint(args, accelerator, global_step) |
|
|
|
|
|
if accelerator.is_main_process: |
|
model = accelerator.unwrap_model(model) |
|
if args.use_ema: |
|
ema.copy_to(model.parameters()) |
|
model.save_pretrained(args.output_dir) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
def save_checkpoint(args, accelerator, global_step): |
|
output_dir = args.output_dir |
|
|
|
|
|
if accelerator.is_main_process and args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = Path(output_dir) / f"checkpoint-{global_step}" |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main(parse_args()) |
|
|