01/31/2022 11:15:19 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: True 01/31/2022 11:15:19 - INFO - __main__ - Training/evaluation parameters TrainingArguments( _n_gpu=1, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, bf16=False, bf16_full_eval=False, dataloader_drop_last=False, dataloader_num_workers=0, dataloader_pin_memory=True, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, debug=[], deepspeed=None, disable_tqdm=False, do_eval=True, do_predict=False, do_train=True, eval_accumulation_steps=None, eval_steps=500, evaluation_strategy=IntervalStrategy.STEPS, fp16=True, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, gradient_accumulation_steps=4, gradient_checkpointing=True, greater_is_better=None, group_by_length=True, half_precision_backend=auto, hub_model_id=None, hub_strategy=HubStrategy.EVERY_SAVE, hub_token=, ignore_data_skip=False, label_names=None, label_smoothing_factor=0.0, learning_rate=7.5e-05, length_column_name=input_length, load_best_model_at_end=False, local_rank=-1, log_level=-1, log_level_replica=-1, log_on_each_node=True, logging_dir=./runs/Jan31_11-15-19_job-aa543290-d6de-4d4d-8a32-2149b1b8e7e3, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=100, logging_strategy=IntervalStrategy.STEPS, lr_scheduler_type=SchedulerType.LINEAR, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mp_parameters=, no_cuda=False, num_train_epochs=50.0, optim=OptimizerNames.ADAMW_HF, output_dir=./, overwrite_output_dir=True, past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=8, prediction_loss_only=False, push_to_hub=True, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, remove_unused_columns=True, report_to=[], resume_from_checkpoint=None, run_name=./, save_on_each_node=False, save_steps=500, save_strategy=IntervalStrategy.STEPS, save_total_limit=3, seed=42, sharded_ddp=[], skip_memory_metrics=True, tf32=None, tpu_metrics_debug=False, tpu_num_cores=None, use_legacy_prediction_loop=False, warmup_ratio=0.0, warmup_steps=2000, weight_decay=0.0, xpu_backend=None, ) Downloading: 0%| | 0.00/4.67k [00:00 to the vocabulary Adding to the vocabulary Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained. loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-1b/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/19f816c26d6fef49a4dfc0fc6b841c37792a250d2697d8432769f8af5698f1dc.90dd5f300087b6277c408283c36aefa2efb15afd0d3e210b3a7c3f3efc478d03 Model config Wav2Vec2Config { "_name_or_path": "facebook/wav2vec2-xls-r-1b", "activation_dropout": 0.0, "adapter_kernel_size": 3, "adapter_stride": 2, "add_adapter": false, "apply_spec_augment": true, "architectures": [ "Wav2Vec2ForPreTraining" ], "attention_dropout": 0.1, "bos_token_id": 1, "classifier_proj_size": 256, "codevector_dim": 1024, "contrastive_logits_temperature": 0.1, "conv_bias": true, "conv_dim": [ 512, 512, 512, 512, 512, 512, 512 ], "conv_kernel": [ 10, 3, 3, 3, 3, 2, 2 ], "conv_stride": [ 5, 2, 2, 2, 2, 2, 2 ], "ctc_loss_reduction": "sum", "ctc_zero_infinity": false, "diversity_loss_weight": 0.1, "do_stable_layer_norm": true, "eos_token_id": 2, "feat_extract_activation": "gelu", "feat_extract_dropout": 0.0, "feat_extract_norm": "layer", "feat_proj_dropout": 0.1, "feat_quantizer_dropout": 0.0, "final_dropout": 0.0, "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout": 0.1, "hidden_size": 1280, "initializer_range": 0.02, "intermediate_size": 5120, "layer_norm_eps": 1e-05, "layerdrop": 0.1, "mask_feature_length": 10, "mask_feature_min_masks": 0, "mask_feature_prob": 0.0, "mask_time_length": 10, "mask_time_min_masks": 2, "mask_time_prob": 0.075, "model_type": "wav2vec2", "num_adapter_layers": 3, "num_attention_heads": 16, "num_codevector_groups": 2, "num_codevectors_per_group": 320, "num_conv_pos_embedding_groups": 16, "num_conv_pos_embeddings": 128, "num_feat_extract_layers": 7, "num_hidden_layers": 48, "num_negatives": 100, "output_hidden_size": 1280, "pad_token_id": 0, "proj_codevector_dim": 1024, "tdnn_dilation": [ 1, 2, 3, 1, 1 ], "tdnn_dim": [ 512, 512, 512, 512, 1500 ], "tdnn_kernel": [ 5, 3, 3, 1, 1 ], "torch_dtype": "float32", "transformers_version": "4.17.0.dev0", "use_weighted_layer_sum": false, "vocab_size": 32, "xvector_output_dim": 512 } https://huggingface.co/facebook/wav2vec2-xls-r-1b/resolve/main/preprocessor_config.json not found in cache or force_download set to True, downloading to /workspace/.cache/huggingface/transformers/tmpjxesrf60 Downloading: 0%| | 0.00/212 [00:00 to the vocabulary Adding to the vocabulary /workspace/wav2vec2-xls-r-1b-korean/./ is already a clone of https://huggingface.co/anantoj/wav2vec2-xls-r-1b-korean. Make sure you pull the latest changes with `repo.git_pull()`. 01/31/2022 11:22:37 - WARNING - huggingface_hub.repository - /workspace/wav2vec2-xls-r-1b-korean/./ is already a clone of https://huggingface.co/anantoj/wav2vec2-xls-r-1b-korean. Make sure you pull the latest changes with `repo.git_pull()`. Using amp half precision backend The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. /opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning warnings.warn( ***** Running training ***** Num examples = 22262 Num Epochs = 50 Instantaneous batch size per device = 8 Total train batch size (w. parallel, distributed & accumulation) = 32 Gradient Accumulation steps = 4 Total optimization steps = 34750 0%| | 0/34750 [00:00 main 02/02/2022 17:38:39 - WARNING - huggingface_hub.repository - To https://huggingface.co/anantoj/wav2vec2-xls-r-1b-korean ac4fd85..3233080 main -> main Upload file pytorch_model.bin: 100%|██████████| 3.59G/3.59G [02:08<00:00, 23.1MB/s] Upload file pytorch_model.bin: 100%|██████████| 3.59G/3.59G [02:08<00:00, 23.1MB/s] Upload file pytorch_model.bin: 100%|██████████| 3.59G/3.59G [02:08<00:00, 30.0MB/s] Dropping the following result as it does not have all the necessary fields: {'dataset': {'name': 'zeroth_korean_asr', 'type': 'zeroth_korean_asr', 'args': 'clean'}}