File size: 10,350 Bytes
f499d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
base_model: anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-5Class-Validation-Mic
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-5Class-Validation-Mic

This model is a fine-tuned version of [anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test](https://huggingface.co/anderloh/Hugginhface-master-wav2vec-pretreined-5-class-train-test) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5967
- Accuracy: 0.4057

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.92   | 3    | 1.6032          | 0.3203   |
| No log        | 1.85   | 6    | 1.6029          | 0.3203   |
| No log        | 2.77   | 9    | 1.6024          | 0.3203   |
| No log        | 4.0    | 13   | 1.6015          | 0.3025   |
| No log        | 4.92   | 16   | 1.6005          | 0.3025   |
| No log        | 5.85   | 19   | 1.5994          | 0.2811   |
| No log        | 6.77   | 22   | 1.5981          | 0.2705   |
| No log        | 8.0    | 26   | 1.5959          | 0.2562   |
| No log        | 8.92   | 29   | 1.5941          | 0.2384   |
| No log        | 9.85   | 32   | 1.5923          | 0.2206   |
| No log        | 10.77  | 35   | 1.5902          | 0.2384   |
| No log        | 12.0   | 39   | 1.5872          | 0.2384   |
| No log        | 12.92  | 42   | 1.5848          | 0.2491   |
| No log        | 13.85  | 45   | 1.5822          | 0.2633   |
| No log        | 14.77  | 48   | 1.5797          | 0.2633   |
| No log        | 16.0   | 52   | 1.5768          | 0.2384   |
| No log        | 16.92  | 55   | 1.5747          | 0.2278   |
| No log        | 17.85  | 58   | 1.5729          | 0.2278   |
| No log        | 18.77  | 61   | 1.5713          | 0.2313   |
| No log        | 20.0   | 65   | 1.5694          | 0.2313   |
| No log        | 20.92  | 68   | 1.5681          | 0.2313   |
| No log        | 21.85  | 71   | 1.5670          | 0.2313   |
| No log        | 22.77  | 74   | 1.5666          | 0.2313   |
| No log        | 24.0   | 78   | 1.5666          | 0.2313   |
| No log        | 24.92  | 81   | 1.5672          | 0.2313   |
| No log        | 25.85  | 84   | 1.5685          | 0.2313   |
| No log        | 26.77  | 87   | 1.5707          | 0.2313   |
| No log        | 28.0   | 91   | 1.5751          | 0.2313   |
| No log        | 28.92  | 94   | 1.5796          | 0.2313   |
| No log        | 29.85  | 97   | 1.5857          | 0.2313   |
| 1.5332        | 30.77  | 100  | 1.5937          | 0.2313   |
| 1.5332        | 32.0   | 104  | 1.6070          | 0.2313   |
| 1.5332        | 32.92  | 107  | 1.6198          | 0.2313   |
| 1.5332        | 33.85  | 110  | 1.6357          | 0.2313   |
| 1.5332        | 34.77  | 113  | 1.6535          | 0.2313   |
| 1.5332        | 36.0   | 117  | 1.6803          | 0.2313   |
| 1.5332        | 36.92  | 120  | 1.7035          | 0.2313   |
| 1.5332        | 37.85  | 123  | 1.7277          | 0.2313   |
| 1.5332        | 38.77  | 126  | 1.7509          | 0.2313   |
| 1.5332        | 40.0   | 130  | 1.7757          | 0.2313   |
| 1.5332        | 40.92  | 133  | 1.7878          | 0.2313   |
| 1.5332        | 41.85  | 136  | 1.7966          | 0.2313   |
| 1.5332        | 42.77  | 139  | 1.8039          | 0.2313   |
| 1.5332        | 44.0   | 143  | 1.8047          | 0.2349   |
| 1.5332        | 44.92  | 146  | 1.8001          | 0.2491   |
| 1.5332        | 45.85  | 149  | 1.7924          | 0.2456   |
| 1.5332        | 46.77  | 152  | 1.7863          | 0.2562   |
| 1.5332        | 48.0   | 156  | 1.7770          | 0.2633   |
| 1.5332        | 48.92  | 159  | 1.7693          | 0.2705   |
| 1.5332        | 49.85  | 162  | 1.7656          | 0.2776   |
| 1.5332        | 50.77  | 165  | 1.7619          | 0.2918   |
| 1.5332        | 52.0   | 169  | 1.7609          | 0.3025   |
| 1.5332        | 52.92  | 172  | 1.7629          | 0.3060   |
| 1.5332        | 53.85  | 175  | 1.7646          | 0.3096   |
| 1.5332        | 54.77  | 178  | 1.7646          | 0.3132   |
| 1.5332        | 56.0   | 182  | 1.7650          | 0.3132   |
| 1.5332        | 56.92  | 185  | 1.7623          | 0.3238   |
| 1.5332        | 57.85  | 188  | 1.7614          | 0.3310   |
| 1.5332        | 58.77  | 191  | 1.7595          | 0.3345   |
| 1.5332        | 60.0   | 195  | 1.7589          | 0.3345   |
| 1.5332        | 60.92  | 198  | 1.7556          | 0.3381   |
| 1.2887        | 61.85  | 201  | 1.7556          | 0.3381   |
| 1.2887        | 62.77  | 204  | 1.7508          | 0.3416   |
| 1.2887        | 64.0   | 208  | 1.7468          | 0.3452   |
| 1.2887        | 64.92  | 211  | 1.7416          | 0.3452   |
| 1.2887        | 65.85  | 214  | 1.7356          | 0.3452   |
| 1.2887        | 66.77  | 217  | 1.7274          | 0.3559   |
| 1.2887        | 68.0   | 221  | 1.7196          | 0.3594   |
| 1.2887        | 68.92  | 224  | 1.7133          | 0.3630   |
| 1.2887        | 69.85  | 227  | 1.7103          | 0.3630   |
| 1.2887        | 70.77  | 230  | 1.7120          | 0.3630   |
| 1.2887        | 72.0   | 234  | 1.7099          | 0.3665   |
| 1.2887        | 72.92  | 237  | 1.7038          | 0.3701   |
| 1.2887        | 73.85  | 240  | 1.6975          | 0.3737   |
| 1.2887        | 74.77  | 243  | 1.6929          | 0.3772   |
| 1.2887        | 76.0   | 247  | 1.6884          | 0.3808   |
| 1.2887        | 76.92  | 250  | 1.6822          | 0.3879   |
| 1.2887        | 77.85  | 253  | 1.6749          | 0.3879   |
| 1.2887        | 78.77  | 256  | 1.6709          | 0.3915   |
| 1.2887        | 80.0   | 260  | 1.6645          | 0.3915   |
| 1.2887        | 80.92  | 263  | 1.6606          | 0.3915   |
| 1.2887        | 81.85  | 266  | 1.6586          | 0.3915   |
| 1.2887        | 82.77  | 269  | 1.6515          | 0.3915   |
| 1.2887        | 84.0   | 273  | 1.6471          | 0.3950   |
| 1.2887        | 84.92  | 276  | 1.6459          | 0.3950   |
| 1.2887        | 85.85  | 279  | 1.6428          | 0.3950   |
| 1.2887        | 86.77  | 282  | 1.6446          | 0.3950   |
| 1.2887        | 88.0   | 286  | 1.6454          | 0.3950   |
| 1.2887        | 88.92  | 289  | 1.6433          | 0.3950   |
| 1.2887        | 89.85  | 292  | 1.6395          | 0.3950   |
| 1.2887        | 90.77  | 295  | 1.6372          | 0.3950   |
| 1.2887        | 92.0   | 299  | 1.6350          | 0.3950   |
| 1.1159        | 92.92  | 302  | 1.6332          | 0.3986   |
| 1.1159        | 93.85  | 305  | 1.6306          | 0.3986   |
| 1.1159        | 94.77  | 308  | 1.6296          | 0.3986   |
| 1.1159        | 96.0   | 312  | 1.6273          | 0.3986   |
| 1.1159        | 96.92  | 315  | 1.6257          | 0.3986   |
| 1.1159        | 97.85  | 318  | 1.6229          | 0.4021   |
| 1.1159        | 98.77  | 321  | 1.6211          | 0.4021   |
| 1.1159        | 100.0  | 325  | 1.6199          | 0.4021   |
| 1.1159        | 100.92 | 328  | 1.6203          | 0.4021   |
| 1.1159        | 101.85 | 331  | 1.6201          | 0.4021   |
| 1.1159        | 102.77 | 334  | 1.6200          | 0.3986   |
| 1.1159        | 104.0  | 338  | 1.6153          | 0.4021   |
| 1.1159        | 104.92 | 341  | 1.6125          | 0.4057   |
| 1.1159        | 105.85 | 344  | 1.6099          | 0.4057   |
| 1.1159        | 106.77 | 347  | 1.6073          | 0.4057   |
| 1.1159        | 108.0  | 351  | 1.6028          | 0.4057   |
| 1.1159        | 108.92 | 354  | 1.6007          | 0.4057   |
| 1.1159        | 109.85 | 357  | 1.6002          | 0.4057   |
| 1.1159        | 110.77 | 360  | 1.6003          | 0.4057   |
| 1.1159        | 112.0  | 364  | 1.6025          | 0.4057   |
| 1.1159        | 112.92 | 367  | 1.6049          | 0.4021   |
| 1.1159        | 113.85 | 370  | 1.6071          | 0.4021   |
| 1.1159        | 114.77 | 373  | 1.6078          | 0.4021   |
| 1.1159        | 116.0  | 377  | 1.6086          | 0.4021   |
| 1.1159        | 116.92 | 380  | 1.6080          | 0.4021   |
| 1.1159        | 117.85 | 383  | 1.6063          | 0.4021   |
| 1.1159        | 118.77 | 386  | 1.6059          | 0.4021   |
| 1.1159        | 120.0  | 390  | 1.6057          | 0.4021   |
| 1.1159        | 120.92 | 393  | 1.6052          | 0.4021   |
| 1.1159        | 121.85 | 396  | 1.6048          | 0.4021   |
| 1.1159        | 122.77 | 399  | 1.6036          | 0.4021   |
| 1.0195        | 124.0  | 403  | 1.6036          | 0.4021   |
| 1.0195        | 124.92 | 406  | 1.6032          | 0.4021   |
| 1.0195        | 125.85 | 409  | 1.6019          | 0.4021   |
| 1.0195        | 126.77 | 412  | 1.6004          | 0.4021   |
| 1.0195        | 128.0  | 416  | 1.5979          | 0.4021   |
| 1.0195        | 128.92 | 419  | 1.5969          | 0.4021   |
| 1.0195        | 129.85 | 422  | 1.5966          | 0.4021   |
| 1.0195        | 130.77 | 425  | 1.5965          | 0.4021   |
| 1.0195        | 132.0  | 429  | 1.5959          | 0.4057   |
| 1.0195        | 132.92 | 432  | 1.5960          | 0.4057   |
| 1.0195        | 133.85 | 435  | 1.5960          | 0.4057   |
| 1.0195        | 134.77 | 438  | 1.5962          | 0.4057   |
| 1.0195        | 136.0  | 442  | 1.5966          | 0.4057   |
| 1.0195        | 136.92 | 445  | 1.5967          | 0.4057   |
| 1.0195        | 137.85 | 448  | 1.5967          | 0.4057   |
| 1.0195        | 138.46 | 450  | 1.5967          | 0.4057   |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2