File size: 14,544 Bytes
a647bb4
 
 
8ca9165
a647bb4
 
 
3b6aeff
a647bb4
3b6aeff
a647bb4
 
 
 
9d4cbd2
 
a647bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b6aeff
a647bb4
 
 
 
 
3b6aeff
a647bb4
 
 
 
 
 
 
 
 
 
 
3b6aeff
f0b66ba
 
 
 
 
3b6aeff
 
 
 
 
 
 
 
 
 
 
 
 
a647bb4
 
e978c4c
 
a647bb4
 
 
 
 
 
 
 
3b6aeff
a647bb4
 
 
 
 
 
 
 
 
 
 
4ccbf83
a647bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b6aeff
a647bb4
 
 
 
4ccbf83
 
3b6aeff
 
a647bb4
 
 
 
 
 
 
 
 
 
 
 
 
3b6aeff
 
 
 
 
 
 
 
 
 
a647bb4
3b6aeff
a647bb4
 
 
 
 
 
 
 
 
 
3b6aeff
 
 
8ca9165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a647bb4
 
 
1eff8ee
a647bb4
 
8ca9165
a647bb4
 
1eff8ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a647bb4
3b6aeff
 
 
1eff8ee
3b6aeff
1eff8ee
a647bb4
 
 
 
 
2033829
a647bb4
 
3b6aeff
a647bb4
 
 
 
8ca9165
 
a647bb4
 
3b6aeff
 
a647bb4
 
2033829
a647bb4
3b6aeff
 
2033829
 
 
 
 
9c98fae
2033829
 
 
 
61657ef
2033829
 
 
 
 
 
 
 
 
 
 
61657ef
2033829
 
 
 
 
 
 
 
 
 
 
 
a647bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b6aeff
 
a647bb4
 
 
8ca9165
3b6aeff
a647bb4
 
3b6aeff
8ca9165
 
 
 
 
 
 
 
1eff8ee
8ca9165
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import math
import json
import torch
from threading import Thread
from copy import deepcopy
from PIL import Image
from torchvision import transforms
from transformers import LlamaPreTrainedModel, LlamaForCausalLM, TextIteratorStreamer
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
from transformers import AutoProcessor

from .configuration_minicpm import MiniCPMVConfig
from .resampler import Resampler

IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_MEAN
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)  # timm.data.IMAGENET_INCEPTION_STD

class MiniCPMVPreTrainedModel(LlamaPreTrainedModel):
    config_class = MiniCPMVConfig


class MiniCPMV(MiniCPMVPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.llm = LlamaForCausalLM(config)
        self.vpm = self.init_vision_module()
        self.vision_dim = self.vpm.embed_dim
        self.embed_dim = self.llm.config.hidden_size
        self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
        self.transform = self.init_transform()

    def init_vision_module(self):
        # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
        model = Idefics2VisionTransformer(self.config.vision_config)
        if self.config.drop_vision_last_layer:
            model.encoder.layers = model.encoder.layers[:-1]

        setattr(model, 'embed_dim', model.embeddings.embed_dim)
        setattr(model, 'patch_size', model.embeddings.patch_size)

        return model

    def init_resampler(self, embed_dim, vision_dim):
        return Resampler(
            num_queries=self.config.query_num,
            embed_dim=embed_dim,
            num_heads=embed_dim // 128,
            kv_dim=vision_dim,
            adaptive=True
        )

    def init_transform(self):
        return transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
                ),
            ]
        )

    def get_input_embeddings(self):
        return self.llm.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.llm.embed_tokens = value

    def get_output_embeddings(self):
        return self.llm.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.llm.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.llm = decoder

    def get_decoder(self):
        return self.llm

    def get_vllm_embedding(self, data):
        if 'vision_hidden_states' not in data:
            dtype = self.llm.model.embed_tokens.weight.dtype
            device = self.llm.model.embed_tokens.weight.device
            tgt_sizes = data['tgt_sizes']
            pixel_values_list = data['pixel_values']
            vision_hidden_states = []
            all_pixel_values = []
            img_cnt = []
            for pixel_values in pixel_values_list:
                img_cnt.append(len(pixel_values))
                all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
                
            # exist image
            if all_pixel_values:
                tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)

                if self.config.batch_vision_input:
                    max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])

                    all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
                                                                       padding_value=0.0)
                    B, L, _ = all_pixel_values.shape
                    all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
                    print(B, "BATCH")
                    patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
                    for i in range(B):
                        patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True

                    vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state
                    vision_embedding = self.resampler(vision_embedding, tgt_sizes)
                else:
                    # get vision_embedding foreach
                    vision_embedding = []
                    for single_tgt_size, single_pixel_values in zip(tgt_sizes, all_pixel_values):
                        single_pixel_values = single_pixel_values.unsqueeze(0)
                        B, L, _ = single_pixel_values.shape
                        single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
                        single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
                        single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
                        vision_embedding.append(single_vision_embedding)
                    vision_embedding = torch.vstack(vision_embedding)

                start = 0
                for pixel_values in pixel_values_list:
                    img_cnt = len(pixel_values)
                    if img_cnt > 0:
                        vision_hidden_states.append(vision_embedding[start: start + img_cnt])
                        start += img_cnt
                    else:
                        vision_hidden_states.append([])
            else: # no image
                if self.training:
                    dummy_image = torch.zeros(
                        (1, 3, 224, 224),
                        device=device, dtype=dtype
                    )
                    tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
                    dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
                else:
                    dummy_feature = []
                for _ in range(len(pixel_values_list)):
                    vision_hidden_states.append(dummy_feature)

        else:
            vision_hidden_states = data['vision_hidden_states']

        if hasattr(self.llm.config, 'scale_emb'):
            vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
        else:
            vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])

        vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
            i, torch.Tensor) else i for i in vision_hidden_states]

        bs = len(data['input_ids'])
        for i in range(bs):
            cur_vs_hs = vision_hidden_states[i]
            if len(cur_vs_hs) > 0:
                cur_vllm_emb = vllm_embedding[i]
                cur_image_bound = data['image_bound'][i]
                if len(cur_image_bound) > 0:
                    image_indices = torch.stack(
                        [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
                    ).to(vllm_embedding.device)

                    cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
                                          cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
                elif self.training:
                    cur_vllm_emb += cur_vs_hs[0].mean() * 0

        print(vllm_embedding.shape)
        return vllm_embedding, vision_hidden_states

    def forward(self, data, **kwargs):
        vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
        position_ids = data["position_ids"]
        if position_ids.dtype != torch.int64:
            position_ids = position_ids.long()

        return self.llm(
            input_ids=None,
            position_ids=position_ids,
            inputs_embeds=vllm_embedding,
            **kwargs
        )

    def _decode_text(self, result_ids, tokenizer):
        result_text = []
        for result in result_ids:
            result = result[result != 0]
            if result[0] == tokenizer.bos_id:
                result = result[1:]
            if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
                result = result[:-1]
            result_text.append(tokenizer.decode(result).strip())
        return result_text

    def _decode(self, inputs_embeds, tokenizer, decode_text=False, **kwargs):
        terminators = [
            tokenizer.eos_token_id,
            tokenizer.convert_tokens_to_ids("<|eot_id|>")
        ]
        output = self.llm.generate(
            inputs_embeds=inputs_embeds,
            pad_token_id=0,
            eos_token_id=terminators,
            **kwargs
        )
        if decode_text:
            return self._decode_text(output, tokenizer)
        return output
    
    def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
        terminators = [
            tokenizer.eos_token_id,
            tokenizer.convert_tokens_to_ids("<|eot_id|>")
        ]
        streamer = TextIteratorStreamer(tokenizer=tokenizer)
        generation_kwargs = {
            'inputs_embeds': inputs_embeds,
            'pad_token_id': 0,
            'eos_token_id': terminators,
            'streamer': streamer
        }
        generation_kwargs.update(kwargs)

        thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
        thread.start()
    
        return streamer

    def generate(
        self,
        model_inputs_batch,
        tokenizer=None,
        vision_hidden_states=None,
        stream=False,
        **kwargs
    ):
        batch = []
        for model_inputs in model_inputs_batch:
            bs = len(model_inputs["input_ids"])
            img_list = model_inputs["pixel_values"]
            tgt_sizes = model_inputs["tgt_sizes"]
            if img_list is None:
                img_list = [[] for i in range(bs)]
            assert bs == len(img_list)
            if vision_hidden_states is None:
                pixel_values = []
                for i in range(bs):
                    img_inps = []
                    for img in img_list[i]:
                        img_inps.append(img.to(self.device))
                    if img_inps:
                        pixel_values.append(img_inps)
                    else:
                        pixel_values.append([])
                model_inputs["pixel_values"] = pixel_values
                model_inputs['tgt_sizes'] = tgt_sizes
            else:
                model_inputs["vision_hidden_states"] = vision_hidden_states
    
            (
                input_embeds,
                vision_hidden_states,
            ) = self.get_vllm_embedding(model_inputs)  
            batch.append(input_embeds)
            

        # output_ids = self._decode(input_embeds, tokenizer, **kwargs)
        if stream:
            kwargs.pop("decode_text")
            result = self._decode_stream(batch, tokenizer, **kwargs)
        else:
            result = self._decode(batch, tokenizer, **kwargs)

        return result

    def chat(
        self,
        images,
        msgs,
        tokenizer,
        processor=None,
        vision_hidden_states=None,
        max_new_tokens=1024,
        sampling=True,
        max_inp_length=2048,
        system_prompt='',
        stream=False,
        **kwargs
    ):
        if processor is None:
            processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
        if isinstance(msgs, str):
            msgs = json.loads(msgs)
        # copy_msgs = deepcopy(msgs)

        assert len(msgs) > 0, "msgs is empty"
        assert sampling or not stream, "if use stream mode, make sure sampling=True"
        assert(len(msgs) == len(images)), "Make sure to have one image per item in your batch"        
        batchM = []
        batchI = []
        for ind in range(len(images)):
            image = images[ind]
            copy_msgs = deepcopy(msgs[ind])
            if image is not None and isinstance(copy_msgs[0]["content"], str): 
                # deep copy element
                copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
                
            imagelist = image
            for i, msg in enumerate(copy_msgs):
                role = msg["role"]
                content = msg["content"]
                assert role in ["user", "assistant"]
                if i == 0:
                    assert role == "user", "The role of first msg should be user"
                if isinstance(content, str):
                    content = [content]
                cur_msgs = []
                for c in content:
                    if isinstance(c, Image.Image):
                        imagelist = c
                        cur_msgs.append("(<image>./</image>)")
                    elif isinstance(c, str):
                        cur_msgs.append(c)
                msg["content"] = "\n".join(cur_msgs)
    
            if system_prompt:
                sys_msg = {'role': 'system', 'content': system_prompt}
                copy_msgs = [sys_msg] + copy_msgs        
            batchM.append(copy_msgs)
            batchI.append(imagelist)
        prompt = processor.tokenizer.apply_chat_template(batchM, tokenize=False, add_generation_prompt=True)
        inputs = processor(prompt, batchI, return_tensors="pt", max_length=max_inp_length).to(self.device)

        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                "repetition_penalty": 1.05
            }
        else:
            generation_config = {
                "num_beams": 3,
                "repetition_penalty": 1.2,
            }

        generation_config.update(
            (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
        )
        with torch.inference_mode():
            res = self.generate(
                inputs,
                tokenizer=tokenizer,
                max_new_tokens=max_new_tokens,
                vision_hidden_states=vision_hidden_states,
                stream=stream,
                decode_text=True,
                **generation_config
            )
        
        if stream:
            def stream_gen():
                for text in res:
                    text = text.replace(tokenizer.eot_token, '').replace(tokenizer.eos_token, '')
                    yield text
            return stream_gen()

        else:
            answer = res
            return answer