File size: 14,080 Bytes
a647bb4 8ca9165 a647bb4 3b6aeff a647bb4 3b6aeff a647bb4 9d4cbd2 a647bb4 3b6aeff a647bb4 3b6aeff a647bb4 3b6aeff f0b66ba 3b6aeff a647bb4 e978c4c a647bb4 3b6aeff a647bb4 3b6aeff a647bb4 e978c4c 3b6aeff a647bb4 3b6aeff a647bb4 3b6aeff a647bb4 3b6aeff 8ca9165 a647bb4 3b6aeff a647bb4 8ca9165 a647bb4 3b6aeff a647bb4 3b6aeff a647bb4 3b6aeff a647bb4 3b6aeff a647bb4 8ca9165 a647bb4 3b6aeff a647bb4 3b6aeff e720fb3 a03d6de e720fb3 0dee11c a647bb4 3b6aeff a647bb4 3b6aeff a647bb4 8ca9165 3b6aeff 8ca9165 3b6aeff a647bb4 3b6aeff a647bb4 8ca9165 3b6aeff a647bb4 3b6aeff 8ca9165 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import math
import json
import torch
from threading import Thread
from copy import deepcopy
from PIL import Image
from torchvision import transforms
from transformers import LlamaPreTrainedModel, LlamaForCausalLM, TextIteratorStreamer
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
from transformers import AutoProcessor
from .configuration_minicpm import MiniCPMVConfig
from .resampler import Resampler
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_MEAN
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_STD
class MiniCPMVPreTrainedModel(LlamaPreTrainedModel):
config_class = MiniCPMVConfig
class MiniCPMV(MiniCPMVPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = LlamaForCausalLM(config)
self.vpm = self.init_vision_module()
self.vision_dim = self.vpm.embed_dim
self.embed_dim = self.llm.config.hidden_size
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
self.transform = self.init_transform()
def init_vision_module(self):
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
model = Idefics2VisionTransformer(self.config.vision_config)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
setattr(model, 'embed_dim', model.embeddings.embed_dim)
setattr(model, 'patch_size', model.embeddings.patch_size)
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True
)
def init_transform(self):
return transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
),
]
)
def get_input_embeddings(self):
return self.llm.get_input_embeddings()
def set_input_embeddings(self, value):
self.llm.embed_tokens = value
def get_output_embeddings(self):
return self.llm.lm_head
def set_output_embeddings(self, new_embeddings):
self.llm.lm_head = new_embeddings
def set_decoder(self, decoder):
self.llm = decoder
def get_decoder(self):
return self.llm
def get_vllm_embedding(self, data):
if 'vision_hidden_states' not in data:
dtype = self.llm.model.embed_tokens.weight.dtype
device = self.llm.model.embed_tokens.weight.device
tgt_sizes = data['tgt_sizes']
pixel_values_list = data['pixel_values']
vision_hidden_states = []
all_pixel_values = []
img_cnt = []
for pixel_values in pixel_values_list:
img_cnt.append(len(pixel_values))
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
# exist image
if all_pixel_values:
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
if self.config.batch_vision_input:
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
padding_value=0.0)
B, L, _ = all_pixel_values.shape
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
for i in range(B):
patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
else:
# get vision_embedding foreach
vision_embedding = []
for single_tgt_size, single_pixel_values in zip(tgt_sizes, all_pixel_values):
single_pixel_values = single_pixel_values.unsqueeze(0)
B, L, _ = single_pixel_values.shape
single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
vision_embedding.append(single_vision_embedding)
vision_embedding = torch.vstack(vision_embedding)
start = 0
for pixel_values in pixel_values_list:
img_cnt = len(pixel_values)
if img_cnt > 0:
vision_hidden_states.append(vision_embedding[start: start + img_cnt])
start += img_cnt
else:
vision_hidden_states.append([])
else: # no image
if self.training:
dummy_image = torch.zeros(
(1, 3, 224, 224),
device=device, dtype=dtype
)
tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
else:
dummy_feature = []
for _ in range(len(pixel_values_list)):
vision_hidden_states.append(dummy_feature)
else:
vision_hidden_states = data['vision_hidden_states']
if hasattr(self.llm.config, 'scale_emb'):
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
else:
vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
i, torch.Tensor) else i for i in vision_hidden_states]
bs = len(data['input_ids'])
for i in range(bs):
cur_vs_hs = vision_hidden_states[i]
if len(cur_vs_hs) > 0:
cur_vllm_emb = vllm_embedding[i]
cur_image_bound = data['image_bound'][i]
if len(cur_image_bound) > 0:
image_indices = torch.stack(
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
).to(vllm_embedding.device)
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
elif self.training:
cur_vllm_emb += cur_vs_hs[0].mean() * 0
return vllm_embedding, vision_hidden_states
def forward(self, data, **kwargs):
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
position_ids = data["position_ids"]
if position_ids.dtype != torch.int64:
position_ids = position_ids.long()
return self.llm(
input_ids=None,
position_ids=position_ids,
inputs_embeds=vllm_embedding,
**kwargs
)
def _decode_text(self, result_ids, tokenizer):
result_text = []
for result in result_ids:
result = result[result != 0]
if result[0] == tokenizer.bos_id:
result = result[1:]
if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
result = result[:-1]
result_text.append(tokenizer.decode(result).strip())
return result_text
def _decode(self, inputs_embeds, tokenizer, decode_text=False, **kwargs):
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
output = self.llm.generate(
inputs_embeds=inputs_embeds,
pad_token_id=0,
eos_token_id=terminators,
**kwargs
)
if decode_text:
return self._decode_text(output, tokenizer)
return output
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
streamer = TextIteratorStreamer(tokenizer=tokenizer)
generation_kwargs = {
'inputs_embeds': inputs_embeds,
'pad_token_id': 0,
'eos_token_id': terminators,
'streamer': streamer
}
generation_kwargs.update(kwargs)
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
thread.start()
return streamer
def generate(
self,
model_inputs,
tokenizer=None,
vision_hidden_states=None,
stream=False,
**kwargs
):
bs = len(model_inputs["input_ids"])
img_list = model_inputs["pixel_values"]
tgt_sizes = model_inputs["tgt_sizes"]
if img_list is None:
img_list = [[] for i in range(bs)]
assert bs == len(img_list)
if vision_hidden_states is None:
pixel_values = []
for i in range(bs):
img_inps = []
for img in img_list[i]:
img_inps.append(img.to(self.device))
if img_inps:
pixel_values.append(img_inps)
else:
pixel_values.append([])
model_inputs["pixel_values"] = pixel_values
model_inputs['tgt_sizes'] = tgt_sizes
else:
model_inputs["vision_hidden_states"] = vision_hidden_states
(
input_embeds,
vision_hidden_states,
) = self.get_vllm_embedding(model_inputs)
# output_ids = self._decode(input_embeds, tokenizer, **kwargs)
if stream:
kwargs.pop("decode_text")
result = self._decode_stream(input_embeds, tokenizer, **kwargs)
else:
result = self._decode(input_embeds, tokenizer, **kwargs)
return result
def chat(
self,
image,
msgs,
tokenizer,
processor=None,
vision_hidden_states=None,
max_new_tokens=1024,
sampling=True,
max_inp_length=2048,
system_prompt='',
stream=False,
**kwargs
):
if processor is None:
processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
if isinstance(msgs, str):
msgs = json.loads(msgs)
copy_msgs = deepcopy(msgs)
assert len(msgs) > 0, "msgs is empty"
assert sampling or not stream, "if use stream mode, make sure sampling=True"
if image is not None and isinstance(copy_msgs[0]["content"], str):
# copy_msgs[0]['content'] = '(<image>./</image>)\n' + copy_msgs[0]['content']
#copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
#copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
copy_msgs[0]["content"] = [copy_msgs[0]["content"]]
copy_msgs[0]["content"].insert(-1, im)
images = []
for i, msg in enumerate(copy_msgs):
role = msg["role"]
content = msg["content"]
assert role in ["user", "assistant"]
if i == 0:
assert role == "user", "The role of first msg should be user"
if isinstance(content, str):
content = [content]
cur_msgs = []
for c in content:
if isinstance(c, Image.Image):
images.append(c)
cur_msgs.append("(<image>./</image>)")
elif isinstance(c, str):
cur_msgs.append(c)
msg["content"] = "\n".join(cur_msgs)
if system_prompt:
sys_msg = {'role': 'system', 'content': system_prompt}
copy_msgs = [sys_msg] + copy_msgs
prompt = processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True)
inputs = processor(prompt, images, return_tensors="pt", max_length=max_inp_length).to(self.device)
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
generation_config.update(
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
)
with torch.inference_mode():
res = self.generate(
inputs,
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
vision_hidden_states=vision_hidden_states,
stream=stream,
decode_text=True,
**generation_config
)
if stream:
def stream_gen():
for text in res:
text = text.replace(tokenizer.eot_token, '').replace(tokenizer.eos_token, '')
yield text
return stream_gen()
else:
answer = res[0]
return answer
|