|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for MiniCPMV. |
|
""" |
|
|
|
from typing import List, Optional, Union, Dict, Any |
|
import torch |
|
import re |
|
|
|
from transformers.image_processing_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy |
|
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device |
|
|
|
from .image_processing_minicpmv import MiniCPMVBatchFeature |
|
|
|
|
|
class MiniCPMVProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor. |
|
|
|
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the |
|
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information. |
|
|
|
Args: |
|
image_processor ([`MiniCPMVImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`LlamaTokenizerWrapper`], *optional*): |
|
The tokenizer is a required input. |
|
""" |
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__(self, image_processor=None, tokenizer=None): |
|
super().__init__(image_processor, tokenizer) |
|
self.version = image_processor.version |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], |
|
images: ImageInput = None, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length: Optional[int] = None, |
|
do_pad: Optional[bool] = True, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
) -> MiniCPMVBatchFeature: |
|
""" |
|
Only support for single input for now. Batched input is coming soon. |
|
|
|
Args: |
|
text (`str`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. Both channels-first and channels-last formats are supported. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding |
|
index) among: |
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
max_length (`int`, *optional*): |
|
Maximum length of the returned list and optionally padding length (see above). |
|
do_pad (`bool`, *optional*, defaults to self.do_pad): |
|
Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch |
|
and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros. |
|
truncation (`bool`, *optional*): |
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
""" |
|
if images is not None: |
|
image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors) |
|
return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length) |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
output_ids = args[0] |
|
result_text = [] |
|
for result in output_ids: |
|
result = result[result != 0] |
|
if result[0] == self.tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == self.tokenizer.eos_id: |
|
result = result[:-1] |
|
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip()) |
|
return result_text |
|
|
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
result = args[0] |
|
result = result[result != 0] |
|
if result[0] == self.tokenizer.bos_id: |
|
result = result[1:] |
|
if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id): |
|
result = result[:-1] |
|
return self.tokenizer.decode(result, *args[1:], **kwargs).strip() |
|
|
|
def _convert( |
|
self, input_str, max_inp_length: Optional[int] = None |
|
): |
|
if self.version == 2.5 or self.tokenizer.add_bos_token: |
|
input_ids = self.tokenizer.encode(input_str) |
|
else: |
|
input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str) |
|
if max_inp_length is not None: |
|
input_ids = input_ids[:max_inp_length] |
|
input_ids = torch.tensor(input_ids, dtype=torch.int32) |
|
|
|
image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0] |
|
image_start_tokens += 1 |
|
image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0] |
|
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens)) |
|
image_bounds = torch.hstack( |
|
[ |
|
image_start_tokens[:valid_image_nums].unsqueeze(-1), |
|
image_end_tokens[:valid_image_nums].unsqueeze(-1), |
|
] |
|
) |
|
return input_ids.unsqueeze(0), image_bounds |
|
|
|
def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None): |
|
assert len(images) == len(texts) |
|
batch = [] |
|
for ind in range(len(images)): |
|
result = self._convert_images_texts_to_inputs2(images[ind], texts[ind], do_pad, truncation, max_length, return_tensors) |
|
batch.append(result) |
|
return batch |
|
|
|
def _convert_images_texts_to_inputs2(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None): |
|
if not len(images): |
|
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length) |
|
return MiniCPMVBatchFeature(data={**model_inputs}) |
|
|
|
pattern = "(<image>./</image>)" |
|
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"] |
|
|
|
image_tags = re.findall(pattern, texts) |
|
assert len(image_tags) == len(image_sizes[0]) |
|
text_chunks = texts.split(pattern) |
|
final_texts = "" |
|
for i in range(len(image_tags)): |
|
final_texts = final_texts + text_chunks[i] + self.image_processor.get_slice_image_placeholder(image_sizes[0][i]) |
|
final_texts += text_chunks[-1] |
|
input_ids, image_bounds = self._convert(final_texts, max_length) |
|
return MiniCPMVBatchFeature(data={ |
|
"input_ids": input_ids, |
|
"pixel_values": images, |
|
"image_sizes": image_sizes, |
|
"image_bound": [image_bounds], |
|
"tgt_sizes": tgt_sizes |
|
}) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|
|
|
|
def pad(self, orig_items, key, max_length=None, padding_value=0, padding_side="left"): |
|
items = [] |
|
if isinstance(orig_items[0][key], list): |
|
assert isinstance(orig_items[0][key][0], torch.Tensor) |
|
for it in orig_items: |
|
for tr in it[key]: |
|
items.append({key: tr}) |
|
else: |
|
assert isinstance(orig_items[0][key], torch.Tensor) |
|
items = orig_items |
|
|
|
batch_size = len(items) |
|
shape = items[0][key].shape |
|
dim = len(shape) |
|
assert dim <= 3 |
|
if max_length is None: |
|
max_length = 0 |
|
max_length = max(max_length, max(item[key].shape[-1] for item in items)) |
|
min_length = min(item[key].shape[-1] for item in items) |
|
dtype = items[0][key].dtype |
|
|
|
if dim == 1: |
|
return torch.cat([item[key] for item in items], dim=0) |
|
elif dim == 2: |
|
if max_length == min_length: |
|
return torch.cat([item[key] for item in items], dim=0) |
|
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value |
|
else: |
|
tensor = ( |
|
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) |
|
+ padding_value |
|
) |
|
|
|
for i, item in enumerate(items): |
|
if dim == 2: |
|
if padding_side == "left": |
|
tensor[i, -len(item[key][0]) :] = item[key][0].clone() |
|
else: |
|
tensor[i, : len(item[key][0])] = item[key][0].clone() |
|
elif dim == 3: |
|
if padding_side == "left": |
|
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone() |
|
else: |
|
tensor[i, : len(item[key][0]), :] = item[key][0].clone() |
|
|
|
return tensor |
|
|