--- library_name: peft license: llama2 base_model: Yellow-AI-NLP/komodo-7b-base tags: - trl - sft - generated_from_trainer datasets: - id_nergrit_corpus model-index: - name: result results: [] --- # result This model is a fine-tuned version of [Yellow-AI-NLP/komodo-7b-base](https://huggingface.co/Yellow-AI-NLP/komodo-7b-base) on the id_nergrit_corpus dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0598 - eval_runtime: 429.4851 - eval_samples_per_second: 1.469 - eval_steps_per_second: 0.368 - epoch: 0.8265 - step: 162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 - bnb_4bit_quant_storage: uint8 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.4.0 - Transformers 4.44.1 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1