--- license: mit base_model: intfloat/multilingual-e5-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: multilingual-e5-large-finetuned-autext24 results: [] --- # multilingual-e5-large-finetuned-autext24 This model is a fine-tuned version of [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2096 - Accuracy: 0.9673 - F1: 0.9673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 4798 | 0.1903 | 0.9527 | 0.9526 | | 0.1396 | 2.0 | 9596 | 0.1751 | 0.9672 | 0.9672 | | 0.1396 | 3.0 | 14394 | 0.2093 | 0.9647 | 0.9646 | | 0.0391 | 4.0 | 19192 | 0.1954 | 0.9690 | 0.9690 | | 0.0391 | 5.0 | 23990 | 0.2096 | 0.9673 | 0.9673 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1