Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +7 -0
- README.md +49 -0
- config.json +25 -0
- config_sentence_transformers.json +7 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +17 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
---
|
9 |
+
|
10 |
+
# andyP/b_sf-it-xxl-submission_20230426_203747
|
11 |
+
|
12 |
+
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
|
13 |
+
|
14 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
15 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
16 |
+
|
17 |
+
## Usage
|
18 |
+
|
19 |
+
To use this model for inference, first install the SetFit library:
|
20 |
+
|
21 |
+
```bash
|
22 |
+
python -m pip install setfit
|
23 |
+
```
|
24 |
+
|
25 |
+
You can then run inference as follows:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from setfit import SetFitModel
|
29 |
+
|
30 |
+
# Download from Hub and run inference
|
31 |
+
model = SetFitModel.from_pretrained("andyP/b_sf-it-xxl-submission_20230426_203747")
|
32 |
+
# Run inference
|
33 |
+
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
|
34 |
+
```
|
35 |
+
|
36 |
+
## BibTeX entry and citation info
|
37 |
+
|
38 |
+
```bibtex
|
39 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
40 |
+
doi = {10.48550/ARXIV.2209.11055},
|
41 |
+
url = {https://arxiv.org/abs/2209.11055},
|
42 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
43 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
44 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
45 |
+
publisher = {arXiv},
|
46 |
+
year = {2022},
|
47 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
48 |
+
}
|
49 |
+
```
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/efederici_sentence-BERTino/",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_hidden_states": true,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"qa_dropout": 0.1,
|
19 |
+
"seq_classif_dropout": 0.2,
|
20 |
+
"sinusoidal_pos_embds": false,
|
21 |
+
"tie_weights_": true,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.28.1",
|
24 |
+
"vocab_size": 32102
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.0",
|
4 |
+
"transformers": "4.17.0",
|
5 |
+
"pytorch": "1.10.0+cu111"
|
6 |
+
}
|
7 |
+
}
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66b113690b0af7ef6f7a2d5d217a0787449181bdc004194a8ff965928e581e7d
|
3 |
+
size 25463
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f79657168b6a37d38befbed1070218f5f6355453c80d386305fc58afcf30aa2
|
3 |
+
size 270338461
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"full_tokenizer_file": null,
|
7 |
+
"mask_token": "[MASK]",
|
8 |
+
"max_len": 512,
|
9 |
+
"model_max_length": 512,
|
10 |
+
"never_split": null,
|
11 |
+
"pad_token": "[PAD]",
|
12 |
+
"sep_token": "[SEP]",
|
13 |
+
"strip_accents": null,
|
14 |
+
"tokenize_chinese_chars": true,
|
15 |
+
"tokenizer_class": "DistilBertTokenizer",
|
16 |
+
"unk_token": "[UNK]"
|
17 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|