File size: 20,735 Bytes
26a4923 aff5ec5 26a4923 aff5ec5 7490b47 aff5ec5 26a4923 aff5ec5 be023c1 aff5ec5 26a4923 be023c1 aff5ec5 be023c1 aff5ec5 be023c1 aff5ec5 be023c1 aff5ec5 be023c1 aff5ec5 26a4923 aff5ec5 26a4923 be023c1 26a4923 aff5ec5 26a4923 aff5ec5 26a4923 aff5ec5 be023c1 26a4923 be023c1 26a4923 be023c1 26a4923 aff5ec5 26a4923 aff5ec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
from typing import List, Union
import torch
import torch.nn.functional as F
from transformers import PreTrainedModel, BertTokenizer
from transformers.utils import is_remote_url, download_url
from pathlib import Path
from .configuration_vgcn import VGCNConfig
import pickle as pkl
import numpy as np
import scipy.sparse as sp
def get_torch_gcn(gcn_vocab_adj_tf, gcn_vocab_adj,gcn_config:VGCNConfig):
def sparse_scipy2torch(coo_sparse):
# coo_sparse=coo_sparse.tocoo()
i = torch.LongTensor(np.vstack((coo_sparse.row, coo_sparse.col)))
v = torch.from_numpy(coo_sparse.data)
return torch.sparse.FloatTensor(i, v, torch.Size(coo_sparse.shape))
def normalize_adj(adj):
"""
Symmetrically normalize adjacency matrix.
"""
D_matrix = np.array(adj.sum(axis=1)) # D-degree matrix as array (Diagonal, rest is 0.)
D_inv_sqrt = np.power(D_matrix, -0.5).flatten()
D_inv_sqrt[np.isinf(D_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(D_inv_sqrt) # array to matrix
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt) # D^(-1/2) . A . D^(-1/2)
gcn_vocab_adj_tf.data *= (gcn_vocab_adj_tf.data > gcn_config.tf_threshold)
gcn_vocab_adj_tf.eliminate_zeros()
gcn_vocab_adj.data *= (gcn_vocab_adj.data > gcn_config.npmi_threshold)
gcn_vocab_adj.eliminate_zeros()
if gcn_config.vocab_type == 'pmi':
gcn_vocab_adj_list = [gcn_vocab_adj]
elif gcn_config.vocab_type == 'tf':
gcn_vocab_adj_list = [gcn_vocab_adj_tf]
elif gcn_config.vocab_type == 'all':
gcn_vocab_adj_list = [gcn_vocab_adj_tf, gcn_vocab_adj]
else:
raise ValueError(f"vocab_type must be 'pmi', 'tf' or 'all', got {gcn_config.vocab_type}")
norm_gcn_vocab_adj_list = []
for i in range(len(gcn_vocab_adj_list)):
adj = gcn_vocab_adj_list[i]
adj = normalize_adj(adj)
norm_gcn_vocab_adj_list.append(sparse_scipy2torch(adj.tocoo()))
for t in norm_gcn_vocab_adj_list:
t.requires_grad = False
del gcn_vocab_adj_list
return norm_gcn_vocab_adj_list
class VCGNModelForTextClassification(PreTrainedModel):
config_class = VGCNConfig
def __init__(self, config, load_adjacency_matrix=True,):
super().__init__(config)
self.tokenizer = BertTokenizer.from_pretrained(config.bert_model)
if load_adjacency_matrix:
norm_gcn_vocab_adj_list = self.load_adj_matrix(config.gcn_adj_matrix)
else:
norm_gcn_vocab_adj_list = []
for _ in range(2 if config.vocab_type=='all' else 1):
norm_gcn_vocab_adj_list.append(torch.sparse.FloatTensor(torch.LongTensor([[0],[0]]), torch.Tensor([0]), (config.vocab_size, config.vocab_size)))
self.model = VGCN_Bert(
config,
gcn_adj_matrix=norm_gcn_vocab_adj_list,
gcn_adj_dim=config.vocab_size,
gcn_adj_num=len(norm_gcn_vocab_adj_list),
gcn_embedding_dim=config.gcn_embedding_dim,
)
@classmethod
def from_pretrained(cls, *model_args, reload_adjacency_matrix=False, **kwargs):
model = super().from_pretrained( *model_args, **kwargs, load_adjacency_matrix=False)
if reload_adjacency_matrix:
norm_gcn_vocab_adj_list = model.load_adj_matrix(model.config.gcn_adj_matrix)
model.model.embeddings.vocab_gcn.adj_matrix=torch.nn.ParameterList([torch.nn.Parameter(x) for x in norm_gcn_vocab_adj_list])
for p in model.model.embeddings.vocab_gcn.adj_matrix:
p.requires_grad=False
return model
def set_adjacency_matrix(self, adj_matrix:Union[List, np.ndarray, sp.csr_matrix, torch.Tensor] ):
if isinstance(adj_matrix, np.ndarray):
adj_matrix = [torch.from_numpy(adj_matrix)]
else:
raise ValueError(f"adjacency matrix must be a list of torch.Tensor or torch.nn.Parameter, got {type(adj_matrix)}")
self.model.embeddings.vocab_gcn.adj_matrix=torch.nn.ParameterList([torch.nn.Parameter(x) for x in adj_matrix])
for p in self.model.embeddings.vocab_gcn.adj_matrix:
p.requires_grad=False
def load_adj_matrix(self, adj_matrix):
filename = None
if Path(adj_matrix).is_file():
filename = Path(adj_matrix)
#load file
elif (Path(__file__).parent / Path(adj_matrix)).is_file():
filename = Path(__file__).parent / Path(adj_matrix)
elif is_remote_url(adj_matrix):
filename = download_url(adj_matrix)
gcn_vocab_adj_tf, gcn_vocab_adj, adj_config = pkl.load(open(filename, 'rb'))
self.tokenizer = BertTokenizer.from_pretrained(adj_config['bert_model'])
return get_torch_gcn(gcn_vocab_adj_tf, gcn_vocab_adj, self.config)
def _prep_batch(self, batch: torch.Tensor):
vocab_size = self.tokenizer.vocab_size
batch_gcn_swop_eye = F.one_hot(batch, vocab_size).float().to(self.device) # shape (batch_size, seq_len, vocab_size)
batch_gcn_swop_eye = batch_gcn_swop_eye.transpose(1,2) # shape (batch_size, vocab_size, seq_len)
# set all [PAD] tokens to 0
batch_gcn_swop_eye[:, self.tokenizer.pad_token_id, :] = 0
batch_gcn_swop_eye[:, self.tokenizer.cls_token_id, :] = 0
batch_gcn_swop_eye[:, self.tokenizer.sep_token_id, :] = 0
batch_gcn_swop_eye = F.pad(batch_gcn_swop_eye,(0,self.config.gcn_embedding_dim,0,0,0,0),value=0)
batch = F.pad(batch, (0, self.config.gcn_embedding_dim), 'constant', 0)
#fill gcn tokens with [SEP]
mask = torch.zeros(batch.shape[0], batch.shape[1] + 1, dtype=batch.dtype, device=self.device)
mask2 = torch.zeros(batch.shape[0], batch.shape[1] + 1, dtype=batch.dtype, device=self.device)
pos_start = (batch==self.tokenizer.pad_token_id).int().argmax(1)
mask[(torch.arange(batch.shape[0]), pos_start)] = 1
mask2[(torch.arange(batch.shape[0]), pos_start+self.config.gcn_embedding_dim)] = 1
mask = mask.cumsum(1)[:, :-1].bool()
mask2 = mask2.cumsum(1)[:, :-1].bool()
mask = mask & ~mask2
batch.masked_fill_(mask, self.tokenizer.sep_token_id)
return batch, batch_gcn_swop_eye
def text_to_batch(self, text: Union[List[str], str]):
if isinstance(text, str):
text = [text]
encoded = self.tokenizer.batch_encode_plus(text, padding=True, truncation=True, return_tensors='pt', max_length=self.config.max_seq_len-self.config.gcn_embedding_dim)
return encoded['input_ids'].to(self.device)
def forward(self, input:Union[torch.Tensor, List[str], str], labels=None):
if not isinstance(input, torch.Tensor):
input = self.text_to_batch(input)
input, batch_gcn_swop_eye = self._prep_batch(input)
segment_ids = torch.zeros_like(input).int().to(self.device)
input_mask = (input>0).int().to(self.device)
logits = self.model(batch_gcn_swop_eye, input, segment_ids, input_mask )
if labels is not None:
loss = torch.nn.cross_entropy(logits, labels)
return {"loss": loss, "logits": logits}
return {"logits": logits}
def predict(self, text: Union[List[str], str], as_dict=True):
with torch.no_grad():
logits = self.forward(text)['logits']
if as_dict:
label_id = torch.argmax(logits, dim=1).cpu().numpy()
label = [self.config.id2label[l] for l in label_id]
return {
"logits": logits,
"label_id": label_id,
"label": label,
}
else:
return torch.argmax(logits, dim=1).cpu().numpy()
@property
def device(self):
return next(self.parameters()).device
import torch
import torch.nn as nn
import torch.nn.init as init
import math
from transformers import BertModel
from transformers.models.bert.modeling_bert import BertEmbeddings, BertPooler,BertEncoder
class VocabGraphConvolution(nn.Module):
"""Vocabulary GCN module.
Params:
`voc_dim`: The size of vocabulary graph
`num_adj`: The number of the adjacency matrix of Vocabulary graph
`hid_dim`: The hidden dimension after XAW
`out_dim`: The output dimension after Relu(XAW)W
`dropout_rate`: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
Inputs:
`vocab_adj_list`: The list of the adjacency matrix
`X_dv`: the feature of mini batch document, can be TF-IDF (batch, vocab), or word embedding (batch, word_embedding_dim, vocab)
Outputs:
The graph embedding representation, dimension (batch, `out_dim`) or (batch, word_embedding_dim, `out_dim`)
"""
def __init__(self,adj_matrix,voc_dim, num_adj, hid_dim, out_dim, dropout_rate=0.2):
super(VocabGraphConvolution, self).__init__()
if isinstance(adj_matrix, nn.Parameter) or isinstance(adj_matrix, nn.ParameterList):
self.adj_matrix=adj_matrix
elif isinstance(adj_matrix, list):
self.adj_matrix=torch.nn.ParameterList([torch.nn.Parameter(x) for x in adj_matrix])
for p in self.adj_matrix:
p.requires_grad=False
else:
raise ValueError(f"adjacency matrix must be a list of torch.Tensor or torch.nn.Parameter, got {type(adj_matrix)}")
self.voc_dim=voc_dim
self.num_adj=num_adj
self.hid_dim=hid_dim
self.out_dim=out_dim
for i in range(self.num_adj):
setattr(self, 'W%d_vh'%i, nn.Parameter(torch.randn(voc_dim, hid_dim)))
self.fc_hc=nn.Linear(hid_dim,out_dim)
self.act_func = nn.ReLU()
self.dropout = nn.Dropout(dropout_rate)
self.reset_parameters()
def reset_parameters(self):
for n,p in self.named_parameters():
if n.startswith('W') :
init.kaiming_uniform_(p, a=math.sqrt(5))
def forward(self, X_dv, add_linear_mapping_term=False):
for i in range(self.num_adj):
H_vh=self.adj_matrix[i].mm(getattr(self, 'W%d_vh'%i))
# H_vh=self.dropout(F.elu(H_vh))
H_vh=self.dropout(H_vh)
H_dh=X_dv.matmul(H_vh)
if add_linear_mapping_term:
H_linear=X_dv.matmul(getattr(self, 'W%d_vh'%i))
H_linear=self.dropout(H_linear)
H_dh+=H_linear
if i == 0:
fused_H = H_dh
else:
fused_H += H_dh
out=self.fc_hc(fused_H)
return out
class VGCNBertEmbeddings(BertEmbeddings):
"""Construct the embeddings from word, VGCN graph, position and token_type embeddings.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`gcn_adj_dim`: The size of vocabulary graph
`gcn_adj_num`: The number of the adjacency matrix of Vocabulary graph
`gcn_embedding_dim`: The output dimension after VGCN
Inputs:
`vocab_adj_list`: The list of the adjacency matrix
`gcn_swop_eye`: The transform matrix for transform the token sequence (sentence) to the Vocabulary order (BoW order)
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
Outputs:
the word embeddings fused by VGCN embedding, position embedding and token_type embeddings.
"""
def __init__(self, config, gcn_adj_matrix, gcn_adj_dim, gcn_adj_num, gcn_embedding_dim):
super(VGCNBertEmbeddings, self).__init__(config)
assert gcn_embedding_dim>=0
self.gcn_adj_matrix=gcn_adj_matrix
self.gcn_embedding_dim=gcn_embedding_dim
self.vocab_gcn=VocabGraphConvolution(gcn_adj_matrix,gcn_adj_dim, gcn_adj_num, 128, gcn_embedding_dim) #192/256
def forward(self, gcn_swop_eye, input_ids, token_type_ids=None, attention_mask=None):
words_embeddings = self.word_embeddings(input_ids)
vocab_input=gcn_swop_eye.matmul(words_embeddings).transpose(1,2)
if self.gcn_embedding_dim>0:
gcn_vocab_out = self.vocab_gcn(vocab_input)
gcn_words_embeddings=words_embeddings.clone()
for i in range(self.gcn_embedding_dim):
tmp_pos=(attention_mask.sum(-1)-2-self.gcn_embedding_dim+1+i)+torch.arange(0,input_ids.shape[0]).to(input_ids.device)*input_ids.shape[1]
gcn_words_embeddings.flatten(start_dim=0, end_dim=1)[tmp_pos,:]=gcn_vocab_out[:,:,i]
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
if self.gcn_embedding_dim>0:
embeddings = gcn_words_embeddings + position_embeddings + token_type_embeddings
else:
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class VGCN_Bert(BertModel):
"""VGCN-BERT model for text classification. It inherits from Huggingface's BertModel.
Params:
`config`: a BertConfig class instance with the configuration to build a new model
`gcn_adj_dim`: The size of vocabulary graph
`gcn_adj_num`: The number of the adjacency matrix of Vocabulary graph
`gcn_embedding_dim`: The output dimension after VGCN
`num_labels`: the number of classes for the classifier. Default = 2.
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
This can be used to compute head importance metrics. Default: False
Inputs:
`vocab_adj_list`: The list of the adjacency matrix
`gcn_swop_eye`: The transform matrix for transform the token sequence (sentence) to the Vocabulary order (BoW order)
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_labels].
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
Outputs:
Outputs the classification logits of shape [batch_size, num_labels].
"""
def __init__(self, config, gcn_adj_matrix, gcn_adj_dim, gcn_adj_num, gcn_embedding_dim):
super(VGCN_Bert, self).__init__(config)
self.embeddings = VGCNBertEmbeddings(config,gcn_adj_matrix,gcn_adj_dim,gcn_adj_num, gcn_embedding_dim)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.gcn_adj_matrix=gcn_adj_matrix
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.will_collect_cls_states=False
self.all_cls_states=[]
self.output_attentions=config.output_attentions
# self.apply(self.init_bert_weights)
def forward(self, gcn_swop_eye, input_ids, token_type_ids=None, attention_mask=None, output_hidden_states=False, head_mask=None):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
embedding_output = self.embeddings(gcn_swop_eye, input_ids, token_type_ids,attention_mask)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
if self.output_attentions:
output_all_encoded_layers=True
encoded_layers = self.encoder(embedding_output,
extended_attention_mask,
output_hidden_states=output_hidden_states,
head_mask=head_mask)
if self.output_attentions:
all_attentions, encoded_layers = encoded_layers
pooled_output = self.pooler(encoded_layers[-1])
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
if self.output_attentions:
return all_attentions, logits
return logits
|