File size: 20,735 Bytes
26a4923
aff5ec5
26a4923
aff5ec5
 
 
7490b47
aff5ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a4923
 
 
aff5ec5
 
 
 
 
 
 
 
 
 
be023c1
aff5ec5
26a4923
be023c1
aff5ec5
be023c1
 
 
 
 
 
aff5ec5
 
 
be023c1
aff5ec5
be023c1
aff5ec5
 
 
 
be023c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff5ec5
26a4923
aff5ec5
26a4923
 
 
 
 
 
 
 
 
 
be023c1
 
26a4923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff5ec5
26a4923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff5ec5
 
 
 
 
26a4923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff5ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be023c1
26a4923
be023c1
26a4923
 
 
be023c1
 
26a4923
aff5ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a4923
aff5ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from typing import List, Union
import torch
import torch.nn.functional as F
from transformers import PreTrainedModel, BertTokenizer
from transformers.utils import is_remote_url, download_url
from pathlib import Path
from .configuration_vgcn import VGCNConfig
import pickle as pkl
import numpy as np
import scipy.sparse as sp




def get_torch_gcn(gcn_vocab_adj_tf, gcn_vocab_adj,gcn_config:VGCNConfig):

    def sparse_scipy2torch(coo_sparse):
        # coo_sparse=coo_sparse.tocoo()
        i = torch.LongTensor(np.vstack((coo_sparse.row, coo_sparse.col)))
        v = torch.from_numpy(coo_sparse.data)
        return torch.sparse.FloatTensor(i, v, torch.Size(coo_sparse.shape))

    def normalize_adj(adj):
        """
            Symmetrically normalize adjacency matrix.
        """

        D_matrix = np.array(adj.sum(axis=1)) # D-degree matrix as array (Diagonal, rest is 0.)
        D_inv_sqrt = np.power(D_matrix, -0.5).flatten()
        D_inv_sqrt[np.isinf(D_inv_sqrt)] = 0.
        d_mat_inv_sqrt = sp.diags(D_inv_sqrt) # array to matrix
        return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt) # D^(-1/2) . A . D^(-1/2)

    gcn_vocab_adj_tf.data *= (gcn_vocab_adj_tf.data > gcn_config.tf_threshold)
    gcn_vocab_adj_tf.eliminate_zeros()

    gcn_vocab_adj.data *= (gcn_vocab_adj.data > gcn_config.npmi_threshold)
    gcn_vocab_adj.eliminate_zeros()

    if gcn_config.vocab_type == 'pmi':
        gcn_vocab_adj_list = [gcn_vocab_adj]
    elif gcn_config.vocab_type == 'tf':
        gcn_vocab_adj_list = [gcn_vocab_adj_tf]
    elif gcn_config.vocab_type == 'all':
        gcn_vocab_adj_list = [gcn_vocab_adj_tf, gcn_vocab_adj]
    else:
        raise ValueError(f"vocab_type must be 'pmi', 'tf' or 'all', got {gcn_config.vocab_type}")

    norm_gcn_vocab_adj_list = []
    for i in range(len(gcn_vocab_adj_list)):
        adj = gcn_vocab_adj_list[i]
        adj = normalize_adj(adj)
        norm_gcn_vocab_adj_list.append(sparse_scipy2torch(adj.tocoo()))
    
    for t in norm_gcn_vocab_adj_list:
        t.requires_grad = False

    del gcn_vocab_adj_list

    return norm_gcn_vocab_adj_list



class VCGNModelForTextClassification(PreTrainedModel):
    config_class = VGCNConfig

    def __init__(self, config, load_adjacency_matrix=True,):
        super().__init__(config)
           
        self.tokenizer = BertTokenizer.from_pretrained(config.bert_model)

        if load_adjacency_matrix:
            norm_gcn_vocab_adj_list = self.load_adj_matrix(config.gcn_adj_matrix)
        else:
            norm_gcn_vocab_adj_list = []
            for _ in range(2 if config.vocab_type=='all' else 1):
                norm_gcn_vocab_adj_list.append(torch.sparse.FloatTensor(torch.LongTensor([[0],[0]]), torch.Tensor([0]), (config.vocab_size, config.vocab_size)))

        self.model = VGCN_Bert(
          config,
          gcn_adj_matrix=norm_gcn_vocab_adj_list, 
          gcn_adj_dim=config.vocab_size, 
          gcn_adj_num=len(norm_gcn_vocab_adj_list), 
          gcn_embedding_dim=config.gcn_embedding_dim,

        )

    @classmethod
    def from_pretrained(cls, *model_args, reload_adjacency_matrix=False, **kwargs):
        model = super().from_pretrained( *model_args, **kwargs, load_adjacency_matrix=False)

        if reload_adjacency_matrix:
            norm_gcn_vocab_adj_list = model.load_adj_matrix(model.config.gcn_adj_matrix)
            model.model.embeddings.vocab_gcn.adj_matrix=torch.nn.ParameterList([torch.nn.Parameter(x) for x in norm_gcn_vocab_adj_list])
            for p in model.model.embeddings.vocab_gcn.adj_matrix:
                p.requires_grad=False

        return model
    
    def set_adjacency_matrix(self, adj_matrix:Union[List, np.ndarray, sp.csr_matrix, torch.Tensor] ):
        
        if isinstance(adj_matrix, np.ndarray):
            adj_matrix = [torch.from_numpy(adj_matrix)]
        else:
            raise ValueError(f"adjacency matrix must be a list of torch.Tensor or torch.nn.Parameter, got {type(adj_matrix)}")

        self.model.embeddings.vocab_gcn.adj_matrix=torch.nn.ParameterList([torch.nn.Parameter(x) for x in adj_matrix])
        for p in self.model.embeddings.vocab_gcn.adj_matrix:
            p.requires_grad=False


    def load_adj_matrix(self, adj_matrix):
        filename = None
        if Path(adj_matrix).is_file():
            filename = Path(adj_matrix)
            #load file           
        elif (Path(__file__).parent / Path(adj_matrix)).is_file():
            filename = Path(__file__).parent / Path(adj_matrix)
        elif is_remote_url(adj_matrix):
            filename = download_url(adj_matrix)


        gcn_vocab_adj_tf, gcn_vocab_adj, adj_config = pkl.load(open(filename, 'rb'))

        self.tokenizer =  BertTokenizer.from_pretrained(adj_config['bert_model'])
        return get_torch_gcn(gcn_vocab_adj_tf, gcn_vocab_adj, self.config)

    def _prep_batch(self, batch: torch.Tensor):

        vocab_size = self.tokenizer.vocab_size

        batch_gcn_swop_eye = F.one_hot(batch, vocab_size).float().to(self.device) # shape (batch_size, seq_len, vocab_size)
        batch_gcn_swop_eye = batch_gcn_swop_eye.transpose(1,2) # shape (batch_size,  vocab_size, seq_len)
                                                                                  # set all [PAD] tokens to 0
        batch_gcn_swop_eye[:, self.tokenizer.pad_token_id, :] = 0
        batch_gcn_swop_eye[:, self.tokenizer.cls_token_id, :] = 0
        batch_gcn_swop_eye[:, self.tokenizer.sep_token_id, :] = 0

        batch_gcn_swop_eye = F.pad(batch_gcn_swop_eye,(0,self.config.gcn_embedding_dim,0,0,0,0),value=0)

        batch = F.pad(batch, (0, self.config.gcn_embedding_dim), 'constant', 0)
        
        #fill gcn tokens with [SEP]
        mask = torch.zeros(batch.shape[0], batch.shape[1] + 1, dtype=batch.dtype, device=self.device)
        mask2 = torch.zeros(batch.shape[0], batch.shape[1] + 1, dtype=batch.dtype, device=self.device)

        pos_start = (batch==self.tokenizer.pad_token_id).int().argmax(1)

        mask[(torch.arange(batch.shape[0]), pos_start)] = 1
        mask2[(torch.arange(batch.shape[0]), pos_start+self.config.gcn_embedding_dim)] = 1

        mask = mask.cumsum(1)[:, :-1].bool()
        mask2 = mask2.cumsum(1)[:, :-1].bool()

        mask = mask & ~mask2

        batch.masked_fill_(mask, self.tokenizer.sep_token_id)

        return batch, batch_gcn_swop_eye
    
    def text_to_batch(self, text: Union[List[str], str]):
        if isinstance(text, str):
            text = [text]
        encoded = self.tokenizer.batch_encode_plus(text, padding=True, truncation=True, return_tensors='pt', max_length=self.config.max_seq_len-self.config.gcn_embedding_dim)
        return encoded['input_ids'].to(self.device)

    def forward(self, input:Union[torch.Tensor, List[str], str], labels=None):

        if not isinstance(input, torch.Tensor):
            input = self.text_to_batch(input)
        
        input, batch_gcn_swop_eye = self._prep_batch(input)

        segment_ids = torch.zeros_like(input).int().to(self.device)
        input_mask = (input>0).int().to(self.device)


        logits = self.model(batch_gcn_swop_eye, input, segment_ids, input_mask )
        if labels is not None:
            loss = torch.nn.cross_entropy(logits, labels)
            return {"loss": loss, "logits": logits}
        return {"logits": logits}

    def predict(self, text: Union[List[str], str], as_dict=True):
        with torch.no_grad():
            logits = self.forward(text)['logits']
            if as_dict:
                label_id = torch.argmax(logits, dim=1).cpu().numpy()
                label = [self.config.id2label[l] for l in label_id]
                return {
                    "logits": logits,
                    "label_id": label_id,
                    "label": label,
                    }
            else:
                return torch.argmax(logits, dim=1).cpu().numpy()
        
    @property
    def device(self):
        return next(self.parameters()).device

import torch
import torch.nn as nn
import torch.nn.init as init
import math

from transformers import BertModel
from transformers.models.bert.modeling_bert import BertEmbeddings, BertPooler,BertEncoder

class VocabGraphConvolution(nn.Module):
    """Vocabulary GCN module.

    Params:
        `voc_dim`: The size of vocabulary graph
        `num_adj`: The number of the adjacency matrix of Vocabulary graph
        `hid_dim`: The hidden dimension after XAW
        `out_dim`: The output dimension after Relu(XAW)W
        `dropout_rate`: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.

    Inputs:
        `vocab_adj_list`: The list of the adjacency matrix
        `X_dv`: the feature of mini batch document, can be TF-IDF (batch, vocab), or word embedding (batch, word_embedding_dim, vocab)

    Outputs:
        The graph embedding representation, dimension (batch, `out_dim`) or (batch, word_embedding_dim, `out_dim`)

    """
    def __init__(self,adj_matrix,voc_dim, num_adj, hid_dim, out_dim, dropout_rate=0.2):
        super(VocabGraphConvolution, self).__init__()
        if isinstance(adj_matrix, nn.Parameter) or isinstance(adj_matrix, nn.ParameterList):
            self.adj_matrix=adj_matrix
        elif isinstance(adj_matrix, list):
            self.adj_matrix=torch.nn.ParameterList([torch.nn.Parameter(x) for x in adj_matrix])
            for p in self.adj_matrix:
                p.requires_grad=False
        else:
            raise ValueError(f"adjacency matrix must be a list of torch.Tensor or torch.nn.Parameter, got {type(adj_matrix)}")

        self.voc_dim=voc_dim
        self.num_adj=num_adj
        self.hid_dim=hid_dim
        self.out_dim=out_dim

        for i in range(self.num_adj):
            setattr(self, 'W%d_vh'%i, nn.Parameter(torch.randn(voc_dim, hid_dim)))

        self.fc_hc=nn.Linear(hid_dim,out_dim) 
        self.act_func = nn.ReLU()
        self.dropout = nn.Dropout(dropout_rate)

        self.reset_parameters()

    def reset_parameters(self):
        for n,p in self.named_parameters():
            if n.startswith('W') :
                init.kaiming_uniform_(p, a=math.sqrt(5))

    def forward(self, X_dv, add_linear_mapping_term=False):
        for i in range(self.num_adj):
            H_vh=self.adj_matrix[i].mm(getattr(self, 'W%d_vh'%i))
            # H_vh=self.dropout(F.elu(H_vh))
            H_vh=self.dropout(H_vh)
            H_dh=X_dv.matmul(H_vh)

            if add_linear_mapping_term:
                H_linear=X_dv.matmul(getattr(self, 'W%d_vh'%i))
                H_linear=self.dropout(H_linear)
                H_dh+=H_linear

            if i == 0:
                fused_H = H_dh
            else:
                fused_H += H_dh

        out=self.fc_hc(fused_H)
        return out


class VGCNBertEmbeddings(BertEmbeddings):
    """Construct the embeddings from word, VGCN graph, position and token_type embeddings.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model
        `gcn_adj_dim`: The size of vocabulary graph
        `gcn_adj_num`: The number of the adjacency matrix of Vocabulary graph
        `gcn_embedding_dim`: The output dimension after VGCN

    Inputs:
        `vocab_adj_list`: The list of the adjacency matrix
        `gcn_swop_eye`: The transform matrix for transform the token sequence (sentence) to the Vocabulary order (BoW order)
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.

    Outputs:
        the word embeddings fused by VGCN embedding, position embedding and token_type embeddings.

    """
    def __init__(self, config, gcn_adj_matrix, gcn_adj_dim, gcn_adj_num, gcn_embedding_dim):
        super(VGCNBertEmbeddings, self).__init__(config)
        assert gcn_embedding_dim>=0
        self.gcn_adj_matrix=gcn_adj_matrix
        self.gcn_embedding_dim=gcn_embedding_dim
        self.vocab_gcn=VocabGraphConvolution(gcn_adj_matrix,gcn_adj_dim, gcn_adj_num, 128, gcn_embedding_dim) #192/256

    def forward(self, gcn_swop_eye, input_ids, token_type_ids=None, attention_mask=None):
        words_embeddings = self.word_embeddings(input_ids)
        vocab_input=gcn_swop_eye.matmul(words_embeddings).transpose(1,2)
        
        if self.gcn_embedding_dim>0:
            gcn_vocab_out = self.vocab_gcn(vocab_input)
         
            gcn_words_embeddings=words_embeddings.clone()
            for i in range(self.gcn_embedding_dim):
                tmp_pos=(attention_mask.sum(-1)-2-self.gcn_embedding_dim+1+i)+torch.arange(0,input_ids.shape[0]).to(input_ids.device)*input_ids.shape[1]
                gcn_words_embeddings.flatten(start_dim=0, end_dim=1)[tmp_pos,:]=gcn_vocab_out[:,:,i]

        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        if self.gcn_embedding_dim>0:
            embeddings = gcn_words_embeddings + position_embeddings + token_type_embeddings
        else:
            embeddings = words_embeddings + position_embeddings + token_type_embeddings

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class VGCN_Bert(BertModel):
    """VGCN-BERT model for text classification. It inherits from Huggingface's BertModel.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model
        `gcn_adj_dim`: The size of vocabulary graph
        `gcn_adj_num`: The number of the adjacency matrix of Vocabulary graph
        `gcn_embedding_dim`: The output dimension after VGCN
        `num_labels`: the number of classes for the classifier. Default = 2.
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `vocab_adj_list`: The list of the adjacency matrix
        `gcn_swop_eye`: The transform matrix for transform the token sequence (sentence) to the Vocabulary order (BoW order)
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        Outputs the classification logits of shape [batch_size, num_labels].

    """
    def __init__(self, config, gcn_adj_matrix, gcn_adj_dim, gcn_adj_num, gcn_embedding_dim):
        super(VGCN_Bert, self).__init__(config)
        self.embeddings = VGCNBertEmbeddings(config,gcn_adj_matrix,gcn_adj_dim,gcn_adj_num, gcn_embedding_dim)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config)
        self.gcn_adj_matrix=gcn_adj_matrix
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.will_collect_cls_states=False
        self.all_cls_states=[]
        self.output_attentions=config.output_attentions

        # self.apply(self.init_bert_weights)

    def forward(self, gcn_swop_eye, input_ids, token_type_ids=None, attention_mask=None, output_hidden_states=False, head_mask=None):
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        embedding_output = self.embeddings(gcn_swop_eye, input_ids, token_type_ids,attention_mask)

        # We create a 3D attention mask from a 2D tensor mask. 
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        if self.output_attentions:
            output_all_encoded_layers=True
        encoded_layers = self.encoder(embedding_output,
                                      extended_attention_mask,
                                      output_hidden_states=output_hidden_states,
                                      head_mask=head_mask)
        if self.output_attentions:
            all_attentions, encoded_layers = encoded_layers

        pooled_output = self.pooler(encoded_layers[-1])
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if self.output_attentions:
            return all_attentions, logits

        return logits