anilguven commited on
Commit
625e6e3
1 Parent(s): 5423970

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -1
README.md CHANGED
@@ -15,4 +15,62 @@ tags:
15
  - electra
16
  - bert
17
  - review
18
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  - electra
16
  - bert
17
  - review
18
+ ---
19
+
20
+ ### Model Info
21
+
22
+ This model was developed/finetuned for product review task for Turkish Language. Model was finetuned via hepsiburada.com product review dataset.
23
+
24
+ ### Model Sources
25
+
26
+ <!-- Provide the basic links for the model. -->
27
+
28
+ - **Dataset:** https://huggingface.co/datasets/anilguven/turkish_product_reviews_sentiment
29
+ - **Paper:** https://ieeexplore.ieee.org/document/9559007
30
+ - **Demo-Coding [optional]:** https://github.com/anil1055/Turkish_Product_Review_Analysis_with_Language_Models
31
+ - **Finetuned from model [optional]:** https://huggingface.co/dbmdz/electra-base-turkish-cased-discriminator
32
+
33
+
34
+ ## How to Get Started with the Model
35
+
36
+ from transformers import pipeline
37
+
38
+ pipe = pipeline("text-classification", model="anilguven/electra_tr_turkish_product_reviews")
39
+
40
+ or
41
+
42
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
43
+
44
+ tokenizer = AutoTokenizer.from_pretrained("anilguven/electra_tr_turkish_product_reviews")
45
+
46
+ model = AutoModelForSequenceClassification.from_pretrained("anilguven/electra_tr_turkish_product_reviews")
47
+
48
+ #### Preprocessing
49
+
50
+ You must apply removing stopwords, stemming, or lemmatization process for Turkish.
51
+
52
+ ### Results
53
+
54
+ Accuracy: %92.54
55
+
56
+ ## Citation
57
+
58
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
59
+
60
+ **BibTeX:**
61
+
62
+ @INPROCEEDINGS{9559007,
63
+ author={Guven, Zekeriya Anil},
64
+ booktitle={2021 6th International Conference on Computer Science and Engineering (UBMK)},
65
+ title={The Effect of BERT, ELECTRA and ALBERT Language Models on Sentiment Analysis for Turkish Product Reviews},
66
+ year={2021},
67
+ volume={},
68
+ number={},
69
+ pages={629-632},
70
+ keywords={Computer science;Sentiment analysis;Analytical models;Computational modeling;Bit error rate;Time factors;Random forests;Sentiment Analysis;Language Model;Product Review;Machine Learning;E-commerce},
71
+ doi={10.1109/UBMK52708.2021.9559007}}
72
+
73
+
74
+ **APA:**
75
+
76
+ Guven, Z. A. (2021, September). The effect of bert, electra and albert language models on sentiment analysis for turkish product reviews. In 2021 6th International Conference on Computer Science and Engineering (UBMK) (pp. 629-632). IEEE.