anirudh21 commited on
Commit
e662ac2
1 Parent(s): 77c874f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: albert-xlarge-v2-finetuned-wnli
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: glue
17
+ type: glue
18
+ args: wnli
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.5633802816901409
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # albert-xlarge-v2-finetuned-wnli
29
+
30
+ This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the glue dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.6878
33
+ - Accuracy: 0.5634
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 2e-05
53
+ - train_batch_size: 2
54
+ - eval_batch_size: 2
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 5
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
63
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
64
+ | No log | 1.0 | 318 | 0.7227 | 0.4366 |
65
+ | 0.7313 | 2.0 | 636 | 0.6878 | 0.5634 |
66
+ | 0.7313 | 3.0 | 954 | 0.6856 | 0.5634 |
67
+ | 0.7047 | 4.0 | 1272 | 0.6949 | 0.4366 |
68
+ | 0.7059 | 5.0 | 1590 | 0.6938 | 0.4366 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.15.0
74
+ - Pytorch 1.10.0+cu111
75
+ - Datasets 1.18.0
76
+ - Tokenizers 0.10.3