--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-soccer-binary2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9719298245614035 --- # swin-tiny-patch4-window7-224-finetuned-soccer-binary2 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1078 - Accuracy: 0.9719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4085 | 0.99 | 20 | 0.1740 | 0.9544 | | 0.1281 | 1.98 | 40 | 0.1078 | 0.9719 | | 0.108 | 2.96 | 60 | 0.0978 | 0.9684 | | 0.1077 | 4.0 | 81 | 0.1006 | 0.9684 | | 0.0916 | 4.99 | 101 | 0.0954 | 0.9649 | | 0.0824 | 5.98 | 121 | 0.0935 | 0.9684 | | 0.0859 | 6.96 | 141 | 0.0975 | 0.9684 | | 0.0927 | 8.0 | 162 | 0.0949 | 0.9684 | | 0.0836 | 8.99 | 182 | 0.0928 | 0.9684 | | 0.0958 | 9.88 | 200 | 0.0940 | 0.9684 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0