File size: 12,398 Bytes
90fbb1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- f1
widget:
- text: 'Pointing out the glaring nature of the smear campaign was the fact that there
    has been absolutely zero information released about the warrants conducted on
    officer Amber Guyger, the killer cop who lived just below Jean.

    '
- text: 'Ganesh makes wild leaps and inferences.

    '
- text: 'But during his 2004 campaign for the Senate, Obama and his corrupt party
    in Chicago somehow managed to unseal the divorce records of his opponent Jack
    Ryan, who was leading by a large margin.

    '
- text: 'Trump has only the “deplorables,” and they are unorganized and will experience
    retribution once Trump is removed.

    '
- text: '“Al Franken must be held accountable if our party wants to live up to our
    commitment to women & girls.”

    '
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: f1
      value: 0.2236842105263158
      name: F1
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | <ul><li>'“They know this is one of the great scandals in the history of our country because basically what they did is, they used [former Trump campaign aide] Carter Page, who nobody even knew, who I feel very badly for, I think he’s been treated very badly.\n'</li><li>'The Guardian did not make a mistake in vilifying Assange without a shred of evidence.\n'</li><li>'He himself said: “No one defends Islam like Arab Christians.” It is to defend Islam that Western clerics do not raise their voice against such acts of brutality.\n'</li></ul>                                                                                                                                                         |
| 1     | <ul><li>'As the political scientist Richard Neustadt said, political elites are constantly evaluating and re-evaluating the president.\n'</li><li>'“I can tell you 100% this is not that kind of guy,” said Rick, adding that he would see Paddock every other day and that the two would go to a local bar and play slot machines.\n'</li><li>'Now, new information released by investigative reporter Laura Loomer proves that authorities have directly lied to the American people about the case at least once by claiming that supposed shooter Stephen Paddock checked into the Mandalay Bay Hotel on September 28th when valet records (with photos) prove he actually arrived three days earlier.\n'</li></ul> |

## Evaluation

### Metrics
| Label   | F1     |
|:--------|:-------|
| **all** | 0.2237 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/appeal-to-authority-setfit-model")
# Run inference
preds = model("Ganesh makes wild leaps and inferences.
")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 2   | 28.8867 | 111 |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 452                   |
| 1     | 113                   |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch   | Step     | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0007  | 1        | 0.3148        | -               |
| 0.0354  | 50       | 0.2792        | -               |
| 0.0708  | 100      | 0.1707        | -               |
| 0.1062  | 150      | 0.1197        | -               |
| 0.1415  | 200      | 0.0768        | -               |
| 0.1769  | 250      | 0.0406        | -               |
| 0.2123  | 300      | 0.0053        | -               |
| 0.2477  | 350      | 0.0571        | -               |
| 0.2831  | 400      | 0.0324        | -               |
| 0.3185  | 450      | 0.001         | -               |
| 0.3539  | 500      | 0.077         | -               |
| 0.3892  | 550      | 0.0002        | -               |
| 0.4246  | 600      | 0.0011        | -               |
| 0.4600  | 650      | 0.003         | -               |
| 0.4954  | 700      | 0.0004        | -               |
| 0.5308  | 750      | 0.0004        | -               |
| 0.5662  | 800      | 0.0006        | -               |
| 0.6016  | 850      | 0.0002        | -               |
| 0.6369  | 900      | 0.0002        | -               |
| 0.6723  | 950      | 0.0003        | -               |
| 0.7077  | 1000     | 0.0116        | -               |
| 0.7431  | 1050     | 0.0059        | -               |
| 0.7785  | 1100     | 0.0002        | -               |
| 0.8139  | 1150     | 0.0001        | -               |
| 0.8493  | 1200     | 0.0001        | -               |
| 0.8846  | 1250     | 0.0003        | -               |
| 0.9200  | 1300     | 0.0001        | -               |
| 0.9554  | 1350     | 0.0           | -               |
| 0.9908  | 1400     | 0.0125        | -               |
| **1.0** | **1413** | **-**         | **0.2868**      |
| 1.0262  | 1450     | 0.0003        | -               |
| 1.0616  | 1500     | 0.0002        | -               |
| 1.0970  | 1550     | 0.0001        | -               |
| 1.1323  | 1600     | 0.0002        | -               |
| 1.1677  | 1650     | 0.0001        | -               |
| 1.2031  | 1700     | 0.0001        | -               |
| 1.2385  | 1750     | 0.0038        | -               |
| 1.2739  | 1800     | 0.0001        | -               |
| 1.3093  | 1850     | 0.0065        | -               |
| 1.3447  | 1900     | 0.0002        | -               |
| 1.3800  | 1950     | 0.0002        | -               |
| 1.4154  | 2000     | 0.0197        | -               |
| 1.4508  | 2050     | 0.0061        | -               |
| 1.4862  | 2100     | 0.0001        | -               |
| 1.5216  | 2150     | 0.0           | -               |
| 1.5570  | 2200     | 0.0321        | -               |
| 1.5924  | 2250     | 0.0002        | -               |
| 1.6277  | 2300     | 0.0331        | -               |
| 1.6631  | 2350     | 0.0069        | -               |
| 1.6985  | 2400     | 0.0001        | -               |
| 1.7339  | 2450     | 0.0           | -               |
| 1.7693  | 2500     | 0.0           | -               |
| 1.8047  | 2550     | 0.0337        | -               |
| 1.8401  | 2600     | 0.0347        | -               |
| 1.8754  | 2650     | 0.0612        | -               |
| 1.9108  | 2700     | 0.0398        | -               |
| 1.9462  | 2750     | 0.0001        | -               |
| 1.9816  | 2800     | 0.0001        | -               |
| 2.0     | 2826     | -             | 0.2926          |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->