--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: 'Texas: Cop Walks Into Home She Thought Was Hers, Kills Innocent Homeowner—Not Arrested' - text: Ellison subsequently agreed to dismiss his restraining order against her if she no longer contacted him. - text: Gina Haspel will become the new Director of the CIA, and the first woman so chosen. - text: At some point, the officer fired her weapon striking the victim. - text: Ronaldo Rauseo-Ricupero, a lawyer for the Indonesians, argued they should have 90 days to move to reopen their cases after receiving copies of their administrative case files and time to appeal any decision rejecting those motions. pipeline_tag: text-classification inference: false base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8151016456921588 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a OneVsRestClassifier instance - **Maximum Sequence Length:** 512 tokens ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8151 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("anismahmahi/doubt_repetition_with_noPropaganda_SetFit") # Run inference preds = model("At some point, the officer fired her weapon striking the victim.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 20.8138 | 129 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 5 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0004 | 1 | 0.3567 | - | | 0.0209 | 50 | 0.3286 | - | | 0.0419 | 100 | 0.2663 | - | | 0.0628 | 150 | 0.2378 | - | | 0.0838 | 200 | 0.1935 | - | | 0.1047 | 250 | 0.2549 | - | | 0.1257 | 300 | 0.2654 | - | | 0.1466 | 350 | 0.1668 | - | | 0.1676 | 400 | 0.1811 | - | | 0.1885 | 450 | 0.1884 | - | | 0.2095 | 500 | 0.157 | - | | 0.2304 | 550 | 0.1237 | - | | 0.2514 | 600 | 0.1318 | - | | 0.2723 | 650 | 0.1334 | - | | 0.2933 | 700 | 0.1067 | - | | 0.3142 | 750 | 0.1189 | - | | 0.3351 | 800 | 0.135 | - | | 0.3561 | 850 | 0.0782 | - | | 0.3770 | 900 | 0.0214 | - | | 0.3980 | 950 | 0.0511 | - | | 0.4189 | 1000 | 0.0924 | - | | 0.4399 | 1050 | 0.1418 | - | | 0.4608 | 1100 | 0.0132 | - | | 0.4818 | 1150 | 0.0018 | - | | 0.5027 | 1200 | 0.0706 | - | | 0.5237 | 1250 | 0.1502 | - | | 0.5446 | 1300 | 0.133 | - | | 0.5656 | 1350 | 0.0207 | - | | 0.5865 | 1400 | 0.0589 | - | | 0.6075 | 1450 | 0.0771 | - | | 0.6284 | 1500 | 0.0241 | - | | 0.6494 | 1550 | 0.0905 | - | | 0.6703 | 1600 | 0.0106 | - | | 0.6912 | 1650 | 0.0451 | - | | 0.7122 | 1700 | 0.0011 | - | | 0.7331 | 1750 | 0.0075 | - | | 0.7541 | 1800 | 0.0259 | - | | 0.7750 | 1850 | 0.0052 | - | | 0.7960 | 1900 | 0.0464 | - | | 0.8169 | 1950 | 0.0039 | - | | 0.8379 | 2000 | 0.0112 | - | | 0.8588 | 2050 | 0.0061 | - | | 0.8798 | 2100 | 0.0143 | - | | 0.9007 | 2150 | 0.0886 | - | | 0.9217 | 2200 | 0.2225 | - | | 0.9426 | 2250 | 0.0022 | - | | 0.9636 | 2300 | 0.0035 | - | | 0.9845 | 2350 | 0.002 | - | | **1.0** | **2387** | **-** | **0.2827** | | 1.0054 | 2400 | 0.0315 | - | | 1.0264 | 2450 | 0.0049 | - | | 1.0473 | 2500 | 0.0305 | - | | 1.0683 | 2550 | 0.0334 | - | | 1.0892 | 2600 | 0.0493 | - | | 1.1102 | 2650 | 0.0424 | - | | 1.1311 | 2700 | 0.0011 | - | | 1.1521 | 2750 | 0.0109 | - | | 1.1730 | 2800 | 0.0009 | - | | 1.1940 | 2850 | 0.0005 | - | | 1.2149 | 2900 | 0.0171 | - | | 1.2359 | 2950 | 0.0004 | - | | 1.2568 | 3000 | 0.0717 | - | | 1.2778 | 3050 | 0.0019 | - | | 1.2987 | 3100 | 0.062 | - | | 1.3196 | 3150 | 0.0003 | - | | 1.3406 | 3200 | 0.0018 | - | | 1.3615 | 3250 | 0.0011 | - | | 1.3825 | 3300 | 0.0005 | - | | 1.4034 | 3350 | 0.0208 | - | | 1.4244 | 3400 | 0.0004 | - | | 1.4453 | 3450 | 0.001 | - | | 1.4663 | 3500 | 0.0003 | - | | 1.4872 | 3550 | 0.0015 | - | | 1.5082 | 3600 | 0.0004 | - | | 1.5291 | 3650 | 0.0473 | - | | 1.5501 | 3700 | 0.0092 | - | | 1.5710 | 3750 | 0.032 | - | | 1.5920 | 3800 | 0.0016 | - | | 1.6129 | 3850 | 0.0623 | - | | 1.6339 | 3900 | 0.0291 | - | | 1.6548 | 3950 | 0.0386 | - | | 1.6757 | 4000 | 0.002 | - | | 1.6967 | 4050 | 0.0006 | - | | 1.7176 | 4100 | 0.0005 | - | | 1.7386 | 4150 | 0.0004 | - | | 1.7595 | 4200 | 0.0004 | - | | 1.7805 | 4250 | 0.0007 | - | | 1.8014 | 4300 | 0.033 | - | | 1.8224 | 4350 | 0.0001 | - | | 1.8433 | 4400 | 0.0489 | - | | 1.8643 | 4450 | 0.0754 | - | | 1.8852 | 4500 | 0.0086 | - | | 1.9062 | 4550 | 0.0092 | - | | 1.9271 | 4600 | 0.0591 | - | | 1.9481 | 4650 | 0.0013 | - | | 1.9690 | 4700 | 0.0043 | - | | 1.9899 | 4750 | 0.0338 | - | | 2.0 | 4774 | - | 0.3304 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```