anismahmahi
commited on
Commit
•
6f71f6c
1
Parent(s):
6585040
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: group3_non_all_zero_notEqualWeights
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# group3_non_all_zero_notEqualWeights
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 2.3167
|
23 |
+
- Precision: 0.0476
|
24 |
+
- Recall: 0.2642
|
25 |
+
- F1: 0.0807
|
26 |
+
- Accuracy: 0.9145
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 55 | 1.3844 | 0.0068 | 0.2579 | 0.0133 | 0.6506 |
|
58 |
+
| No log | 2.0 | 110 | 1.1245 | 0.0107 | 0.2342 | 0.0205 | 0.7285 |
|
59 |
+
| No log | 3.0 | 165 | 1.2261 | 0.0103 | 0.2120 | 0.0196 | 0.7286 |
|
60 |
+
| No log | 4.0 | 220 | 1.1828 | 0.0099 | 0.1693 | 0.0188 | 0.7551 |
|
61 |
+
| No log | 5.0 | 275 | 1.2474 | 0.0141 | 0.2152 | 0.0265 | 0.8008 |
|
62 |
+
| No log | 6.0 | 330 | 1.4395 | 0.0264 | 0.2516 | 0.0478 | 0.8601 |
|
63 |
+
| No log | 7.0 | 385 | 1.5667 | 0.0253 | 0.2278 | 0.0456 | 0.8614 |
|
64 |
+
| No log | 8.0 | 440 | 1.6080 | 0.0286 | 0.2468 | 0.0512 | 0.8756 |
|
65 |
+
| No log | 9.0 | 495 | 1.7798 | 0.0289 | 0.2358 | 0.0515 | 0.8849 |
|
66 |
+
| 0.6462 | 10.0 | 550 | 1.9265 | 0.0364 | 0.2579 | 0.0638 | 0.8933 |
|
67 |
+
| 0.6462 | 11.0 | 605 | 2.0633 | 0.0347 | 0.2468 | 0.0608 | 0.8911 |
|
68 |
+
| 0.6462 | 12.0 | 660 | 2.2610 | 0.0458 | 0.2690 | 0.0783 | 0.9138 |
|
69 |
+
| 0.6462 | 13.0 | 715 | 2.1700 | 0.0435 | 0.2595 | 0.0745 | 0.9044 |
|
70 |
+
| 0.6462 | 14.0 | 770 | 2.3153 | 0.0480 | 0.2690 | 0.0814 | 0.9127 |
|
71 |
+
| 0.6462 | 15.0 | 825 | 2.3167 | 0.0476 | 0.2642 | 0.0807 | 0.9145 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.30.0
|
77 |
+
- Pytorch 2.2.2+cu121
|
78 |
+
- Datasets 2.19.0
|
79 |
+
- Tokenizers 0.13.3
|