File size: 10,276 Bytes
8d5bf10
 
 
 
 
 
 
 
 
 
 
 
36c8e2a
8d5bf10
 
 
 
 
 
 
 
 
25c46ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d5bf10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- f1
model-index:
- name: lora-roberta-large-no-anger-f4-0927
  results: []
library_name: peft
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lora-roberta-large-no-anger-f4-0927

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7106
- Accuracy: 0.7405
- Prec: 0.7387
- Recall: 0.7405
- F1: 0.7387
- B Acc: 0.5982
- Micro F1: 0.7405
- Prec Joy: 0.7558
- Recall Joy: 0.7617
- F1 Joy: 0.7587
- Prec Anger: 0.6294
- Recall Anger: 0.5631
- F1 Anger: 0.5944
- Prec Disgust: 0.4637
- Recall Disgust: 0.3854
- F1 Disgust: 0.4209
- Prec Fear: 0.4892
- Recall Fear: 0.5817
- F1 Fear: 0.5315
- Prec Neutral: 0.8292
- Recall Neutral: 0.8481
- F1 Neutral: 0.8385
- Prec Sadness: 0.6600
- Recall Sadness: 0.6140
- F1 Sadness: 0.6362
- Prec Surprise: 0.5320
- Recall Surprise: 0.4331
- F1 Surprise: 0.4775

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 25.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Prec   | Recall | F1     | B Acc  | Micro F1 | Prec Joy | Recall Joy | F1 Joy | Prec Anger | Recall Anger | F1 Anger | Prec Disgust | Recall Disgust | F1 Disgust | Prec Fear | Recall Fear | F1 Fear | Prec Neutral | Recall Neutral | F1 Neutral | Prec Sadness | Recall Sadness | F1 Sadness | Prec Surprise | Recall Surprise | F1 Surprise |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|:--------:|:--------:|:----------:|:------:|:----------:|:------------:|:--------:|:------------:|:--------------:|:----------:|:---------:|:-----------:|:-------:|:------------:|:--------------:|:----------:|:------------:|:--------------:|:----------:|:-------------:|:---------------:|:-----------:|
| 0.8167        | 1.25  | 2049  | 0.7756          | 0.7130   | 0.7003 | 0.7130 | 0.7030 | 0.5272 | 0.7130   | 0.7252   | 0.7430     | 0.7340 | 0.6026     | 0.3749       | 0.4622   | 0.4187       | 0.3646         | 0.3898     | 0.5369    | 0.4170      | 0.4694  | 0.7763       | 0.8629         | 0.8173     | 0.6123       | 0.5784         | 0.5949     | 0.4797        | 0.3495          | 0.4044      |
| 0.7639        | 2.5   | 4098  | 0.7302          | 0.7293   | 0.7206 | 0.7293 | 0.7224 | 0.5662 | 0.7293   | 0.7361   | 0.7617     | 0.7487 | 0.6187     | 0.5198       | 0.5649   | 0.3881       | 0.4229         | 0.4048     | 0.5851    | 0.4247      | 0.4922  | 0.7961       | 0.8570         | 0.8254     | 0.6380       | 0.6185         | 0.6281     | 0.532         | 0.3585          | 0.4283      |
| 0.7395        | 3.75  | 6147  | 0.7348          | 0.7287   | 0.7328 | 0.7287 | 0.7271 | 0.5793 | 0.7287   | 0.6989   | 0.8136     | 0.7519 | 0.6786     | 0.4384       | 0.5327   | 0.4180       | 0.3875         | 0.4022     | 0.4632    | 0.5830      | 0.5162  | 0.8480       | 0.8134         | 0.8303     | 0.6648       | 0.5950         | 0.6280     | 0.5210        | 0.4241          | 0.4676      |
| 0.789         | 5.0   | 8196  | 0.7419          | 0.7275   | 0.7206 | 0.7275 | 0.7180 | 0.5511 | 0.7275   | 0.6888   | 0.8113     | 0.7450 | 0.6014     | 0.5183       | 0.5568   | 0.4038       | 0.4021         | 0.4029     | 0.5747    | 0.4305      | 0.4923  | 0.8063       | 0.8420         | 0.8238     | 0.6861       | 0.5838         | 0.6308     | 0.6224        | 0.2695          | 0.3762      |
| 0.7439        | 6.25  | 10245 | 0.7608          | 0.7207   | 0.7317 | 0.7207 | 0.7224 | 0.5858 | 0.7207   | 0.6882   | 0.8143     | 0.7459 | 0.6198     | 0.5004       | 0.5537   | 0.3944       | 0.3542         | 0.3732     | 0.4556    | 0.5843      | 0.5120  | 0.8599       | 0.7888         | 0.8228     | 0.7047       | 0.5590         | 0.6235     | 0.4535        | 0.4996          | 0.4754      |
| 0.712         | 7.5   | 12294 | 0.7240          | 0.7298   | 0.7270 | 0.7298 | 0.7263 | 0.5809 | 0.7298   | 0.7057   | 0.8043     | 0.7518 | 0.6313     | 0.4795       | 0.5450   | 0.4141       | 0.4271         | 0.4205     | 0.5707    | 0.4517      | 0.5043  | 0.8329       | 0.8214         | 0.8271     | 0.6126       | 0.6459         | 0.6288     | 0.5209        | 0.4367          | 0.4751      |
| 0.7032        | 8.75  | 14343 | 0.7095          | 0.7344   | 0.7328 | 0.7344 | 0.7317 | 0.5833 | 0.7344   | 0.7557   | 0.7479     | 0.7518 | 0.6391     | 0.5302       | 0.5796   | 0.4311       | 0.3521         | 0.3876     | 0.4724    | 0.6062      | 0.5310  | 0.8188       | 0.8498         | 0.8340     | 0.6472       | 0.6140         | 0.6301     | 0.5605        | 0.3827          | 0.4549      |
| 0.6972        | 10.0  | 16392 | 0.7108          | 0.7343   | 0.7325 | 0.7343 | 0.7317 | 0.5923 | 0.7343   | 0.7158   | 0.8038     | 0.7572 | 0.5785     | 0.5474       | 0.5625   | 0.3615       | 0.4729         | 0.4097     | 0.5714    | 0.4865      | 0.5255  | 0.8322       | 0.8288         | 0.8305     | 0.6797       | 0.5973         | 0.6358     | 0.5403        | 0.4097          | 0.4660      |
| 0.6859        | 11.25 | 18441 | 0.7211          | 0.7376   | 0.7321 | 0.7376 | 0.7322 | 0.5792 | 0.7376   | 0.7067   | 0.8093     | 0.7545 | 0.6216     | 0.5325       | 0.5736   | 0.4119       | 0.4188         | 0.4153     | 0.5720    | 0.4755      | 0.5193  | 0.8264       | 0.8407         | 0.8335     | 0.6677       | 0.6099         | 0.6375     | 0.5876        | 0.3675          | 0.4522      |
| 0.6542        | 12.5  | 20490 | 0.7143          | 0.7347   | 0.7294 | 0.7347 | 0.7307 | 0.5817 | 0.7347   | 0.7358   | 0.7824     | 0.7584 | 0.6263     | 0.5407       | 0.5804   | 0.3931       | 0.3792         | 0.3860     | 0.5700    | 0.4665      | 0.5131  | 0.8203       | 0.8364         | 0.8283     | 0.6158       | 0.6658         | 0.6398     | 0.5400        | 0.4007          | 0.4600      |
| 0.6463        | 13.75 | 22539 | 0.7022          | 0.7369   | 0.7366 | 0.7369 | 0.7354 | 0.5947 | 0.7369   | 0.7371   | 0.7864     | 0.7610 | 0.5452     | 0.6393       | 0.5885   | 0.5170       | 0.3167         | 0.3928     | 0.5519    | 0.4858      | 0.5168  | 0.8455       | 0.8218         | 0.8335     | 0.6062       | 0.6649         | 0.6342     | 0.5320        | 0.4483          | 0.4866      |
| 0.6333        | 15.0  | 24588 | 0.7106          | 0.7405   | 0.7387 | 0.7405 | 0.7387 | 0.5982 | 0.7405   | 0.7558   | 0.7617     | 0.7587 | 0.6294     | 0.5631       | 0.5944   | 0.4637       | 0.3854         | 0.4209     | 0.4892    | 0.5817      | 0.5315  | 0.8292       | 0.8481         | 0.8385     | 0.6600       | 0.6140         | 0.6362     | 0.5320        | 0.4331          | 0.4775      |
| 0.6184        | 16.25 | 26637 | 0.7199          | 0.7338   | 0.7389 | 0.7338 | 0.7348 | 0.6077 | 0.7338   | 0.7207   | 0.8008     | 0.7586 | 0.6140     | 0.5571       | 0.5842   | 0.3692       | 0.4292         | 0.3969     | 0.5024    | 0.5972      | 0.5457  | 0.8534       | 0.8079         | 0.8301     | 0.6714       | 0.6            | 0.6337     | 0.5109        | 0.4618          | 0.4851      |
| 0.5916        | 17.5  | 28686 | 0.7220          | 0.7368   | 0.7376 | 0.7368 | 0.7363 | 0.6003 | 0.7368   | 0.7426   | 0.7859     | 0.7636 | 0.5858     | 0.5713       | 0.5784   | 0.3743       | 0.4125         | 0.3925     | 0.5766    | 0.4653      | 0.5150  | 0.8479       | 0.8258         | 0.8367     | 0.5879       | 0.6676         | 0.6252     | 0.5146        | 0.4735          | 0.4932      |
| 0.5823        | 18.75 | 30735 | 0.7228          | 0.7376   | 0.7374 | 0.7376 | 0.7364 | 0.5960 | 0.7376   | 0.7210   | 0.8058     | 0.7610 | 0.6206     | 0.5534       | 0.5851   | 0.4056       | 0.3625         | 0.3828     | 0.5199    | 0.5631      | 0.5406  | 0.8460       | 0.8200         | 0.8328     | 0.6599       | 0.6126         | 0.6354     | 0.5254        | 0.4546          | 0.4875      |
| 0.5728        | 20.0  | 32784 | 0.7313          | 0.7344   | 0.7365 | 0.7344 | 0.7349 | 0.6090 | 0.7344   | 0.7295   | 0.7934     | 0.7601 | 0.5795     | 0.5907       | 0.5851   | 0.3927       | 0.4271         | 0.4092     | 0.5434    | 0.5161      | 0.5294  | 0.8462       | 0.8115         | 0.8285     | 0.6541       | 0.6311         | 0.6424     | 0.4928        | 0.4933          | 0.4930      |
| 0.5562        | 21.25 | 34833 | 0.7414          | 0.7376   | 0.7372 | 0.7376 | 0.7366 | 0.5995 | 0.7376   | 0.7372   | 0.7934     | 0.7643 | 0.6308     | 0.5258       | 0.5735   | 0.3946       | 0.425          | 0.4092     | 0.5324    | 0.5341      | 0.5332  | 0.8433       | 0.8267         | 0.8349     | 0.6139       | 0.6374         | 0.6254     | 0.5249        | 0.4537          | 0.4867      |
| 0.5348        | 22.5  | 36882 | 0.7398          | 0.7370   | 0.7374 | 0.7370 | 0.7365 | 0.6017 | 0.7370   | 0.7268   | 0.8039     | 0.7634 | 0.5844     | 0.5892       | 0.5868   | 0.4013       | 0.3937         | 0.3975     | 0.5331    | 0.5238      | 0.5284  | 0.8488       | 0.8163         | 0.8322     | 0.6473       | 0.6275         | 0.6372     | 0.5194        | 0.4573          | 0.4864      |
| 0.5202        | 23.75 | 38931 | 0.7423          | 0.7389   | 0.7379 | 0.7389 | 0.7381 | 0.6013 | 0.7389   | 0.7415   | 0.7893     | 0.7646 | 0.6020     | 0.5728       | 0.5871   | 0.4013       | 0.3896         | 0.3953     | 0.5341    | 0.5296      | 0.5318  | 0.8416       | 0.8279         | 0.8347     | 0.6410       | 0.6338         | 0.6374     | 0.5093        | 0.4663          | 0.4869      |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3